SYMPOSIA PAPER Published: 01 January 2010

Minimizing Machining Distortion in Aluminum Alloys through Successful Application of Uphill Quenching—A Process Overview


Recently, emphasis has been placed on achieving maximum dimensional stability in a wide range of critical aluminum components such as large complex aerospace machined parts, space mirrors, optical stages, lens mounts, and computer disks. In these cases, absolute stability is required before putting a part into service. In many cases, successful operation of a complete system hinges on the stability of a single part such as a space mirror in a satellite or a component of a laser guided missile. Proper application of the uphill quenching process has enabled the successful production of parts to provide minimum stresses resulting in the optimum component at the lowest cost. Basic principles for achieving dimensional stability and considerations for proper application of unique tools such as polyalkylene glycol polymer (glycol) quenching and uphill quenching to achieve maximum dimensional stability are discussed. Properly applied, and combined with an understanding of all factors contributing to part instability, these tools can be used as effective elements in a systems approach, which when effectively employed by experienced technicians, will achieve results not obtainable by other means. In addition, examples are provided illustrating successful use of the process to produce low stress parts.

Author Information

Croucher, Tom
Tom Croucher and Associates, Norco, CA
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: D02
Pages: 332–351
DOI: 10.1520/STP49158S
ISBN-EB: 978-0-8031-8417-6
ISBN-13: 978-0-8031-7509-9