Standard Historical Last Updated: Aug 16, 2017 Track Document
ASTM D7248/D7248M-08

Standard Test Method for Bearing/Bypass Interaction Response of Polymer Matrix Composite Laminates Using 2-Fastener Specimens

Standard Test Method for Bearing/Bypass Interaction Response of Polymer Matrix Composite Laminates Using 2-Fastener Specimens D7248_D7248M-08 ASTM|D7248_D7248M-08|en-US Standard Test Method for Bearing/Bypass Interaction Response of Polymer Matrix Composite Laminates Using 2-Fastener Specimens Standard new BOS Vol. 15.03 Committee D30
$ 108.00 In stock

Significance and Use

This test method is designed to produce bearing/bypass interaction response data for research and development, and for structural design and analysis. The standard configuration for each procedure is very specific and is intended as a baseline configuration for developing structural design data.

Procedure A, the bypass/high bearing double-shear configuration is recommended for developing data for specific applications which involve double shear joints.

Procedure B, the bypass/high bearing single-shear configuration is more useful in the evaluation of typical joint configurations. The specimen may be tested in either an unstabilized (no support fixture) or stabilized configuration. The unstabilized configuration is intended for tensile loading and the stabilized configuration is intended for compressive loading. These configurations, particularly the stabilized configuration, have been extensively used in the development of design allowables data. The variants of either procedure provide flexibility in the conduct of the test, allowing adaptation of the test setup to a specific application. However, the flexibility of test parameters allowed by the variants makes meaningful comparison between datasets difficult if the datasets were not tested using identical test parameters.

Procedure C, the bypass/low bearing double-shear hardpoint configuration is recommended for determining the effect of low bearing stress levels on bypass strength. While a similar single-shear configuration could be tested, there is insufficient experience with a single-shear configuration to recommend its use at this time.

General factors that influence the mechanical response of composite laminates and should therefore be reported include the following: material, methods of material preparation and lay-up, specimen stacking sequence, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time held at test temperature, void content, and volume percent reinforcement.

Specific factors that influence the bearing/bypass interaction response of composite laminates and should therefore be reported include not only the loading method (either Procedure A or B) and loading type (tension or compression) but the following (for both procedures): edge distance ratio, width to diameter ratio, diameter to thickness ratio, fastener torque, fastener or pin material, fastener or pin clearance; and (for Procedure B only) countersink angle and depth of countersink, type of grommet (if used), type of mating material, and type of support fixture (if used). Properties, in the test direction, which may be obtained from this test method include the following:

Filled hole tensile bearing/bypass strength.

Filled hole compressive bearing/bypass strength.

Bearing stress/bypass strain curve.

Scope

1.1 This test method determines the uniaxial bearing/bypass interaction response of multi-directional polymer matrix composite laminates reinforced by high-modulus fibers by either double-shear tensile loading (Procedures A and C) or single-shear tensile or compressive loading (Procedure B) of a two-fastener specimen. The scope of this test method is limited to net section (bypass) failure modes. Standard specimen configurations using fixed values of test parameters are described for each procedure. A number of test parameters may be varied within the scope of the standard, provided that the parameters are fully documented in the test report. The composite material forms are limited to continuous-fiber or discontinuous-fiber (tape or fabric, or both) reinforced composites for which the laminate is balanced and symmetric with respect to the test direction. The range of acceptable test laminates and thicknesses are described in 8.2.1.

1.2 This test method is consistent with the recommendations of MIL-HDBK-17, which describes the desirable attributes of a bearing/bypass interaction response test method.

1.3 The two-fastener test configurations described in this test method are similar to those in Test Method D 5961/D 5961M as well as those used by industry to investigate the bearing portion of the bearing/bypass interaction response for bolted joints, where the specimen may produce either a bearing failure mode or a bypass failure mode. Should the test specimen fail in a bearing failure mode rather than the desired bypass mode, then the test should be considered to be a bearing dominated bearing/bypass test, and the data reduction and reporting procedures of Test Method D 5961/D 5961M should be used instead of those given in this standard.

1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 15.03
Developed by Subcommittee: D30.05
Pages: 30
DOI: 10.1520/D7248_D7248M-08
ICS Code: 59.100.01