You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.


    Polarization Sensitive Laser Calorimetry

    Published: 0

      Format Pages Price  
    PDF (268K) 15 $25   ADD TO CART
    Complete Source PDF (14M) 655 $197   ADD TO CART


    Techniques used currently to determine bulk and surface laser aborption coefficients of highly transparent materials have drawbacks both inherent and practical that limit their accuracy. Conventional bar calorimetry attempts a two-coefficient characterization of nine separate physical absorption sites. Photo-acoustic techniques require in situ calibration sensitive to sample geometry and material.

    This paper proposes a new technique in which a set of conventional ballistic laser calorimetry measurements are made on a single prismatic sample. Systematic changes in the polarization and direction of propagation of the laser beam can lead to an explicit determination of individual surface and bulk absorption coefficients. An equilateral prism sample provides a set of independent measurements sufficient to establish the bulk absorption in each of three internal paths and two absorption components on each of the three surfaces. This geometry can be used, in principle, for materials with refractive indices less than 2; more practically, for indices less than 1.7. For higher indices, a truncated prism is proposed which allows seven independent measures to deduce eight absorption components. An assumption of constant surface anisotropy is proposed to complete the analysis. Design criteria for the prism shape are presented, along with analytical expressions for all relevant absorption experiments, and for the simplest cases of uniform, isotropic high and low index materials.

    Author Information:

    Miles, P
    Raytheon Company, Bedford, Massachusetts

    Committee/Subcommittee: F01.02

    DOI: 10.1520/STP37240S