If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM F2787 - 13(2018)

    Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers

    Active Standard ASTM F2787 | Developed by Subcommittee: F17.65

    Book of Standards Volume: 08.04

      Format Pages Price  
    PDF 25 $78.00   ADD TO CART
    Hardcopy (shipping and handling) 25 $78.00   ADD TO CART

    Significance and Use

    4.1 This practice provides a rational method for structural design of thermoplastic stormwater chambers. The loads, capacities, and limit states are based on accepted load and resistance factor design for thermoplastic pipes; however, existing design specifications for thermoplastic pipes do not adequately address the design of chambers due to (1) open-bottom geometry, (2) support on integral foot, (3) varying circumferential corrugation geometry, and (4) manufacture with alternative thermoplastic resin. This practice standardizes recommendations for designers to adequately address these aspects of chamber design.

    4.2 This practice is written to allow chamber manufacturers to evaluate chambers meeting existing classifications and to design chambers for new classifications as they are developed.

    1. Scope

    1.1 This practice standardizes structural design of thermoplastic corrugated wall arch-shaped chambers used for collection, detention, and retention of stormwater runoff. The practice is for chambers installed in a trench or bed and subjected to earth and live loads. Structural design includes the composite system made up of the chamber arch, the chamber foot, and the soil envelope. Relevant recognized practices include design of thermoplastic culvert pipes and design of foundations.

    1.2 This practice standardizes methods for manufacturers of buried thermoplastic structures to design for the time dependent behavior of plastics using soil support as an integral part of the structural system. This practice is not applicable to thermoplastic structures that do not include soil support as a component of the structural system.

    1.3 This practice is limited to structural design and does not provide guidance on hydraulic, hydrologic, or environmental design considerations that may need to be addressed for functional use of stormwater collection chambers.

    1.4 Stormwater chambers are most commonly embedded in open graded, angular aggregate which provide both structural support and open porosity for water storage. Should soils other than open graded, angular aggregate be specified for embedment, other installation and functional concerns may need to be addressed that are outside the scope of this practice.

    1.5 Chambers are produced in arch shapes to meet classifications that specify chamber rise, chamber span, minimum foot width, minimum wall thickness, and minimum arch stiffness constant. Chambers are manufactured with integral footings.

    1.6 Polypropylene chamber classifications are found in Specification F2418. Specification F2418 also specifies chamber manufacture and qualification.

    1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

    1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

    1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    AASHTO Standard Specifications

    M 43

    M 145 Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes

    T 99 Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and a 305-mm (12-in.) Drop

    AASHTO LRFD Bridge Design Specifications

    Section 10 Foundations, 10.6 Spread Footings

    Section 12 Buried Structures and Tunnel Liners, 12.12 Thermoplastic Pipes

    Section 3 Loads and Load Factors, 3.5 Permanent Loads; 3.6 Live Loads

    ASTM Standards

    D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

    D2990 Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics

    D6992 Test Method for Accelerated Tensile Creep and Creep-Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped Isothermal Method

    F2418 Specification for Polypropylene (PP) Corrugated Wall Stormwater Collection Chambers

    ICS Code

    ICS Number Code 83.140.99 (Other rubber and plastic products)

    UNSPSC Code

    UNSPSC Code 40171500(Commercial pipe and piping)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/F2787-13R18

    Citation Format

    ASTM F2787-13(2018), Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers, ASTM International, West Conshohocken, PA, 2018, www.astm.org

    Back to Top