ASTM E944 - 13

    Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA)

    Active Standard ASTM E944 | Developed by Subcommittee: E10.05

    Book of Standards Volume: 12.02

      Format Pages Price  
    PDF 8 $45.00   ADD TO CART
    Hardcopy (shipping and handling) 8 $45.00   ADD TO CART
    Standard + Redline PDF Bundle 16 $54.00   ADD TO CART

    Significance and Use

    3.1 Adjustment methods provide a means for combining the results of neutron transport calculations with neutron dosimetry measurements (see Test Method E1005 and NUREG/CR-5049) in order to obtain optimal estimates for neutron damage exposure parameters with assigned uncertainties. The inclusion of measurements reduces the uncertainties for these parameter values and provides a test for the consistency between measurements and calculations and between different measurements (see 3.3.3). This does not, however, imply that the standards for measurements and calculations of the input data can be lowered; the results of any adjustment procedure can be only as reliable as are the input data.

    3.2 Input Data and Definitions :

    3.2.1 The symbols introduced in this section will be used throughout the guide.

    3.2.2 Dosimetry measurements are given as a set of reaction rates (or equivalent) denoted by the following symbols:

    Equation E0944-13_1

    These data are, at present, obtained primarily from radiometric dosimeters, but other types of sensors may be included (see 4.1).

    3.2.3 The neutron spectrum (see Terminology E170) at the dosimeter location, fluence or fluence rate Φ(E) as a function of neutron energy E , is obtained by appropriate neutronics calculations (neutron transport using the methods of discrete ordinates or Monte Carlo, see Guide E482). The results of the calculation are customarily given in the form of multigroup fluences or fluence rates.

    Equation E0944-13_2

    Ej and Ej+1 are the lower and upper bounds for the j-th energy group, respectively, and k is the total number of groups.

    3.2.4 The reaction cross sections of the dosimetry sensors are obtained from an evaluated cross section file. The cross section for the i-th reaction as a function of energy E will be denoted by the following:

    Equation E0944-13_3

    Used in connection with the group fluences, Eq 2, are the calculated group-averaged cross sections σij. These values are defined through the following equation:

    Equation E0944-13_4

    Equation E0944-13_5

    Equation E0944-13_6

    3.2.5 Uncertainty information in the form of variances and covariances must be provided for all input data. Appropriate corrections must be made if the uncertainties are due to bias producing effects (for example, effects of photo reactions).

    3.3 Summary of the Procedures:

    3.3.1 An adjustment algorithm modifies the set of input data as defined in 3.2 in the following manner (adjusted quantities are indicated by a tilde, for example, ãi):

    Equation E0944-13_7

    Equation E0944-13_8

    or for group fluence rates

    Equation E0944-13_9

    Equation E0944-13_10

    or for group-averaged cross sections

    Equation E0944-13_11

    The adjusted quantities must satisfy the following conditions:

    Equation E0944-13_12

    or in the form of group fluence rates

    Equation E0944-13_13

    Since the number of equations in Eq 11 is much smaller than the number of adjustments, there exists no unique solution to the problem unless it is further restricted. The mathematical algorithm in current adjustment codes are intended to make the adjustments as small as possible relative to the uncertainties of the corresponding input data. Codes like STAY'SL, FERRET, LEPRICON, and LSL-M2 (see Table 1) are based explicitly on the statistical principles such as “Maximum Likelihood Principle” or “Bayes Theorem,” which are generalizations of the well-known least squares principle. Using variances and correlations of the input fluence, dosimetry, and cross section data (see 4.1.1, 4.2.2, and 4.3.3), even the older codes, notably SAND-II and CRYSTAL BALL, can be interpreted as application of the least squares principle although the statistical assumptions are not spelled out explicitly (see Table 1). A detailed discussion of the mathematical derivations can be found in NUREG/CR-2222 and EPRI NP-2188.

    TABLE 1 Available Unfolding Codes


    Solution Method

    Code Available





    RSICC Prog. No. CCC-112, CCC-619, PSR-345


    contains trial spectra library. No output uncertainties in the original code, but modified Monte Carlo code provides output uncertainties (2, 3, 4)







    statistical, linear estimation

    RSICC Prog. No. CCC-108

    5, 6

    minimizes deviation in magnitude, no output uncertainties.







    statistical, linear estimation



    constrained weighted linear least squares code using B-spline basic functions. No output uncertainties.







    statistical, linear estimation, linear programming

    RSICC Prog. No. PSR-136, 161


    minimizes shape deviation, determines upper and lower bounds for integral parameter and contribution of foils to bounds and estimates. No statistical output uncertainty.







    statistical, linear estimation

    RSICC Prog. No. PSR-122

    9, 10,11,12

    RADAK is a general adjustment code not restricted to spectrum adjustment.







    statistical linear estimation

    RSICC Prog. No. PSR-113


    permits use of full or partial correlation uncertainty data for activation and cross section data.







    statistical, linear estimation

    RSICC Prog. No. PSR-177

    14, 15

    permits use of full covariance data and includes routine of sensitivity analysis.







    statistical, least squares with log normal a priori distributions

    RSICC Prog. No. PSR-145

    2, 3

    flexible input options allow the inclusion of both differential and integral measurements. Cross sections and multiple spectra may be simultaneously adjusted. FERRET is a general adjustment code not restricted to spectrum adjustments.







    statistical, generalized linear least squares with normal a priori and a posteriori distributions

    RSICC Prog. No. PSR-277

    16, 17, 18

    simultaneous adjustment of absolute spectra at up to two dosimetry locations and one pressure vessel location. Combines integral and differential data with built-in uncertainties. Provides reduced adjusted pressure vessel group fluence covariances using built-in sensitivity database.







    statistical, least squares, with log normal a priori and a posteriori distributions

    RSICC Prog. No.


    simultaneous adjustment of several spectra. Provides covariances for adjusted integral parameters. Dosimetry cross-section file included.







    Statistical, maximum entropy with output uncertatinties

    RSICC Prog. No.

    20, 21

    Two components. MAXED is a maximum entropy code. GRAVEL (22) is an iterative code.







    Statistical, least squares


    23, 24

    Several components, STAY'NL, X333, and MIEKE. Distributed by IAEA as part of the REAL-84 interlaboratory exercise on spectrum adjustment (25).







    Statistical, general least squares

    RSICC Prog. No.


    Simultaneous evaluation with differential and integral data, primarily used for cross-section evaluation but extensible to spectrum adjustments.

    A The boldface numbers in parentheses refer to the list of references appended to this guide. An important problem in reactor surveillance is the determination of neutron fluence inside the pressure vessel wall at locations which are not accessible to dosimetry. Estimates for exposure parameter values at these locations can be obtained from adjustment codes which adjust fluences simultaneously at more than one location when the cross correlations between fluences at different locations are given. LEPRICON has provisions for the estimation of cross correlations for fluences and simultaneous adjustment. LSL-M2 also allows simultaneous adjustment, but cross correlations must be given.

    3.3.2 The adjusted data ãi, etc., are, for any specific algorithm, unique functions of the input variables. Thus, uncertainties (variances and covariances) for the adjusted parameters can, in principle, be calculated by propagation the uncertainties for the input data. Linearization may be used before calculating the uncertainties of the output data if the adjusted data are nonlinear functions of the input data. The algorithms of the adjustment codes tend to decrease the variances of the adjusted data compared to the corresponding input values. The linear least squares adjustment codes yield estimates for the output data with minimum variances, that is, the “best” unbiased estimates. This is the primary reason for using these adjustment procedures.

    3.3.3 Properly designed adjustment methods provide means to detect inconsistencies in the input data which manifest themselves through adjustments that are larger than the corresponding uncertainties or through large values of chi-square, or both. (See NUREG/CR-3318 and NUREG/CR-3319.) Any detection of inconsistencies should be documented, and output data obtained from inconsistent input should not be used. All input data should be carefully reviewed whenever inconsistencies are found, and efforts should be made to resolve the inconsistencies as stated below. Input data should be carefully investigated for evidence of gross errors or biases if large adjustments are required. Note that the erroneous data may not be the ones that required the largest adjustment; thus, it is necessary to review all input data. Data of dubious validity may be eliminated if proper corrections cannot be determined. Any elimination of data must be documented and reasons stated which are independent of the adjustment procedure. Inconsistent data may also be omitted if they contribute little to the output under investigation. Inconsistencies may also be caused by input variances which are too small. The assignment of uncertainties to the input data should, therefore, be reviewed to determine whether the assumed precision and bias for the experimental and calculational data may be unrealistic. If so, variances may be increased, but reasons for doing so should be documented. Note that in statistically based adjustment methods, listed in Table 1 the output uncertainties are determined only by the input uncertainties and are not affected by inconsistencies in the input data (see NUREG/CR-2222). Note also that too large adjustments may yield unreliable data because the limits of the linearization are exceeded even if these adjustments are consistent with the input uncertainties.

    3.3.4 Using the adjusted fluence spectrum, estimates of damage exposure parameter values can be calculated. These parameters are weighted integrals over the neutron fluence

    Equation E0944-13_14

    or for group fluences

    Equation E0944-13_15

    with given weight (response) functions w(E) or w j, respectively. The response function for dpa of iron is listed in Practice E693. Fluence greater than 1.0 MeV or fluence greater than 0.1 MeV is represented as w(E) = 1 for E above the limit and w(E) = 0 for E below. Finding best estimates of damage exposure parameters and their uncertainties is the primary objective in the use of adjustment procedures for reactor surveillance. If calculated according to Eq 12 or Eq 13, unbiased minimum variance estimates for the parameter p result, provided the adjusted fluence Φ˜ is an unbiased minimum variance estimate. The variance of p can be calculated in a straightforward manner from the variances and covariances of the adjusted fluence spectrum. Uncertainties of the response functions, wj, if any, should not be considered in the calculation of the output variances when a standard response function, such as the dpa for iron in Practice E693, is used. The calculation of damage exposure parameters and their variances should ideally be part of the adjustment code.

    1. Scope

    1.1 This guide covers the analysis and interpretation of the physics dosimetry for Light Water Reactor (LWR) surveillance programs. The main purpose is the application of adjustment methods to determine best estimates of neutron damage exposure parameters and their uncertainties.

    1.2 This guide is also applicable to irradiation damage studies in research reactors.

    1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    Government Document

    NBSIR 85–3151 Compendium of Benchmark Neutron Fields for Reactor Dosimetry

    ASTM Standards

    E170 Terminology Relating to Radiation Measurements and Dosimetry

    E262 Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    E263 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    E264 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel

    E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32

    E266 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum

    E393 Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters

    E481 Test Method for Measuring Neutron Fluence Rates by Radioactivation of Cobalt and Silver

    E482 Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance, E706 (IID)

    E523 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper

    E526 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium

    E693 Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID)

    E704 Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238

    E705 Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237

    E706 Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E 706(0)

    E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (IIC)

    E853 Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, E706(IA)

    E854 Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706(IIIB)

    E910 Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)

    E1005 Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance, E 706 (IIIA)

    E1018 Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)

    E2005 Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields

    E2006 Guide for Benchmark Testing of Light Water Reactor Calculations

    Nuclear Regulatory Commission Documents

    NUREG/CR-5049 Pressure Vessel Fluence Analysis and Neutron Dosimetry

    Electric Power Research Institute

    EPRI NP-2188 Development and Demonstration of an Advanced Methodology for LWR Dosimetry Applications

    ICS Code

    ICS Number Code 27.120.20 (Nuclear power plants. Safety)

    UNSPSC Code

    UNSPSC Code 46171600(Surveillance and detection equipment); 26142100(Nuclear reactor equipment)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/E0944-13

    Citation Format

    ASTM E944-13, Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA), ASTM International, West Conshohocken, PA, 2013,

    Back to Top