ASTM E2859 - 11

    Standard Guide for Size Measurement of Nanoparticles Using Atomic Force Microscopy

    Active Standard ASTM E2859 | Developed by Subcommittee: E56.02

    Book of Standards Volume: 14.02


      Format Pages Price  
    PDF 9 $42.00   ADD TO CART
    Hardcopy (shipping and handling) 9 $42.00   ADD TO CART


    Significance and Use

    As AFM measurement technology has matured and proliferated, the technique has been widely adopted by the nanotechnology research and development community to the extent that it is now considered an indispensible tool for visualizing and quantifying structures on the nanoscale. Whether used as a stand-alone method or to complement other dimensional measurement methods, AFM is now a firmly established component of the nanoparticle measurement tool box. International standards for AFM-based determination of nanoparticle size are nonexistent as of the drafting of this guide. Therefore, this standard aims to provide practical and metrological guidance for the application of AFM to measure the size of substrate-supported nanoparticles based on maximum displacement as the probe is rastered across the particle surface to create a line profile.

    1. Scope

    1.1 The purpose of this document is to provide guidance on the quantitative application of atomic force microscopy (AFM) to determine the size of nanoparticles deposited in dry form on flat substrates using height (z-displacement) measurement. Unlike electron microscopy, which provides a two-dimensional projection or a two-dimensional image of a sample, AFM provides a three-dimensional surface profile. While the lateral dimensions are influenced by the shape of the probe, displacement measurements can provide the height of nanoparticles with a high degree of accuracy and precision. If the particles are assumed to be spherical, the height measurement corresponds to the diameter of the particle. In this guide, procedures are described for dispersing gold nanoparticles on various surfaces such that they are suitable for imaging and height measurement via intermittent contact mode AFM. Generic procedures for AFM calibration and operation to make such measurements are then discussed. Finally, procedures for data analysis and reporting are addressed. The nanoparticles used to exemplify these procedures are National Institute of Standards and Technology (NIST) reference materials containing citrate-stabilized negatively charged gold nanoparticles in an aqueous solution.

    1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    E1617 Practice for Reporting Particle Size Characterization Data

    E2382 Guide to Scanner and Tip Related Artifacts in Scanning Tunneling Microscopy and Atomic Force Microscopy

    E2456 Terminology Relating to Nanotechnology

    E2530 Practice for Calibrating the Z-Magnification of an Atomic Force Microscope at Subnanometer Displacement Levels Using Si(111) Monatomic Steps

    E2587 Practice for Use of Control Charts in Statistical Process Control

    ISO Standards

    ISO/IECGuide98-3:200 Uncertainty of measurement--Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995)


    ICS Code

    ICS Number Code 07.030 (Physics. Chemistry)

    UNSPSC Code

    UNSPSC Code


    DOI: 10.1520/E2859-11

    ASTM International is a member of CrossRef.

    ASTM E2859

    Citing ASTM Standards
    Back to Top