Effect of Boundary Heat Transfer Coefficient and Probe Section Size on Cooling Curves During Quenching

    Volume 1, Issue 1

    ISSN: 2165-3992

    CODEN: MPCOAD

    Published Online: 1 September 2012

    Page Count: 8


    Ramesh, G.

    Prabhu, K. Narayan
    Dept. of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Srinivasnagar, Mangalore,

    (Received 28 September 2011; accepted 12 January 2012)

    Abstract

    In the present work the effect of boundary heat transfer coefficient and section size of quench probe material on cooling curves was investigated by using finite difference heat transfer based SolidCast software. Simulations were carried out at different combinations of heat transfer coefficient and quench probe diameter and thermal history at the geometric center of the probe was estimated to generate cooling curves. Simulation results show that both boundary heat transfer coefficient and quench probe diameter had a significant effect on the average cooling rate. A relationship between Grossmann quench severity (H), thermal conductivity of material, size of the probe, and average cooling rate was established. By using this model, for a known quench medium, probe size, and material it is possible to predict the average cooling rate of the probe. On the other-hand, for a given material and required cooling rate, cooling severity required from the quench media could be predicted and accordingly an appropriate quench medium can be selected.


    Paper ID: MPC104365

    DOI: 10.1520/MPC104365

    ASTM International is a member of CrossRef.

    Author
    Title Effect of Boundary Heat Transfer Coefficient and Probe Section Size on Cooling Curves During Quenching
    Symposium , 0000-00-00
    Committee A01