Volume 3, Issue 1 (January 2006)

    Modeling of the Simultaneous Evolution of Vacancy and Interstitial Dislocation Loops in hcp Metals Under Irradiation

    (Received 18 March 2004; accepted 8 August 2005)

    CODEN: JAIOAD

      Format Pages Price  
    PDF 18 $25   ADD TO CART


    Abstract

    We present a model of the homogeneous nucleation and growth of vacancy and interstitial loops in irradiated hcp metals, which allows one to find the size distribution function, the dose dependence of the mean parameters of the dislocation system, and to describe effects due to temperature, material parameters, and initial microstructure. The model is based on a hierarchy of coupled ordinary differential equations. The first two equations are the rate equations for vacancy and interstitial concentrations. Other equations describe random walks of interstitial and vacancy clusters in a size space, i.e., the time dependence of loop densities. As an input, the model contains the capture efficiencies of point defects by loops, which depend self-consistently on the loop size and dislocation density. We have considered two possible scenarios depending on the point defect dilatation volume ratio: (i) dislocation bias for interstitial atoms and (ii) dislocation bias for vacancies. The model results are qualitatively consistent with experimental observations of a coexistence of interstitial and vacancy dislocation loops on the same habit planes in Zr and other hcp metals. The temperature dependence of the resulting loop size distributions depends strongly on the material properties and the initial microstructure.


    Author Information:

    Dubinko, V
    Leading researcher, National Science Center Kharkov Institute of Physics and Technology, Kharkov,

    Turkin, A
    Head of laboratory, National Science Center Kharkov Institute of Physics and Technology, Kharkov,

    Abyzov, A
    Senior researcher, National Science Center Kharkov Institute of Physics and Technology, Kharkov,

    Griffiths, M
    Acting manager, Chalk River Laboratories, Chalk River, Ontario


    Stock #: JAI12323

    ISSN: 1546-962X

    DOI: 10.1520/JAI12323

    ASTM International is a member of CrossRef.

    Author
    Title Modeling of the Simultaneous Evolution of Vacancy and Interstitial Dislocation Loops in hcp Metals Under Irradiation
    Symposium Zirconium in the Nuclear Industry: Fourteenth International Symposium, 2004-06-15
    Committee B10