Correlation Between Miniature Cone Tip Resistance and Shear Strength Parameters of Clean and Silty Sand Using a Conventional Triaxial Setup

    Volume 31, Issue 3 (May 2008)

    ISSN: 0149-6115

    CODEN: GTJOAD

    Published Online: 15 November 2007

    Page Count: 11


    Kumar, Jyant
    Associate Professor and Research Scholar, Indian Institute of Science, Bangalore,

    Raju, K. V. S. B.
    Associate Professor and Research Scholar, Indian Institute of Science, Bangalore,

    (Received 3 November 2006; accepted 16 October 2007)

    Abstract

    The ultimate tip resistance of the cone was determined by employing a miniature cone penetrometer of diameter 19.5 mm in conventional triaxial equipment. A number of penetration tests were carried out for clean and silty sands. The variation of the tip resistance was determined with respect to changes in effective vertical stress (σv). It was seen that with this laboratory experimental setup, it is possible to make a reasonable prediction of the ultimate cone tip resistance (qcu). As expected, the tip resistance increases with an increase in (σv). For the same range of the relative density, an increase in proportion of silt was found to generally cause a reduction in the tip resistance. By considering the effect of the overburden stress on internal friction angle of soil mass, it was noted that the magnitude of qcuv increases almost linearly with friction angle. The obtained values of qcu compare reasonably well with two different widely used correlations in literature. It is expected that the study will be useful for deriving correlations between shear strength parameters and the cone tip resistance for cohesionless deposits at different values of the effective overburden pressure especially for loose to medium dense states.


    Paper ID: GTJ100896

    DOI: 10.1520/GTJ100896

    ASTM International is a member of CrossRef.

    Author
    Title Correlation Between Miniature Cone Tip Resistance and Shear Strength Parameters of Clean and Silty Sand Using a Conventional Triaxial Setup
    Symposium , 0000-00-00
    Committee D18