Work Item
ASTM WK75240

New Guide for Very-high cycle fatigue testing of metallic materials at ambient and elevated temperatures

1. Scope

The scope of activity within the Committee shall be the advancement of knowledge and understanding of fatigue and fracture phenomena by:

* Promoting research and development of, and education related to, methods to evaluate the fatigue and fracture characteristics of materials and structures;
* Developing standards, proposals, and, when necessary, emergency standards for evaluating fatigue and fracture behavior. The preparation of Standard Practices, Guides, Terminology, and Test Methods is included in this development;
* Sponsoring technical meetings and symposia either independently or cooperatively with other organizations;
* Coordinating the Committee's activities with those of organizations having mutual interests, including other relevant ASTM Committees and non-ASTM organizations.
The range of Committee interest includes all engineering applications in which materials, processed parts, components or complete assemblies are subjected to loadings that might result in degradation of material or loss of structural integrity. Specific areas of interest include:

* All phenomena related to cyclic deformation, damage accumulation, crack formation, crack growth, and fracture of either materials or structures;
* Physical deformation and fracture mechanisms;
* Constitutive modeling, stress and strain analysis ranging from global to local (e.g., the crack-tip vicinity), and fracture mechanics analysis;
* Models that relate loading, deformation, configuration and damage parameters to life and residual strength behavior;
* Fatigue and fracture behavior of welded, fastened, and bonded components or assemblies of metallic or composite materials;
* Relationships between fatigue and fracture behavior and: (a) material characteristics (e.g., microstructure; thermo-mechanical history; residual stresses), (2) design details (e.g., stress concentrations; construction methods) and (3) operational details (e.g., quality control procedures; fretting; wear; mechanical, chemical, thermal, and radiation environment); and
* Methods and procedures, including statistical analysis, by which fatigue and fracture characteristics may be described, evaluated, and detected.

Keywords

VHCF; Ultrasonic; kilo-hz; Fatigue

Rationale

This guide would also give guidance on current practices for very high cycle fatigue testing of 10 million cycles to 1 billion cycles or more using machines capable of high cyclic frequencies. The current fatigue standards E466 and E606 do not address some of the key issues regarding machines that can achieve frequencies in excess of 100 hz to as high as 20 khz, such as dynamic load verification, methods of control, data sampling best practices, open loop control in the case of ultrasonic test machines ect. Users of this standard would be researchers interested in creating fatigue curves that approaching the materials end use life cycle.

The title and scope are in draft form and are under development within this ASTM Committee.

Details

Developed by Subcommittee: E08.05

Committee: E08

Staff Manager: Brian Milewski

Work Item Status

Date Initiated: 12-18-2020

Technical Contact: Raymond Kersey

Item: 000

Ballot:

Status: