ENVIRONMENTAL PRODUCT DECLARATION

Fleeceback Thermoplastic Polyolefin [TP0] Membrane

AMRIZE

GENERAL INFORMATION

This cradle-to-gate with options Environmental Product Declaration covers a TPO Single Ply Roofing Membrane product produced at the Muscle Shoals Plant. The Life Cycle Assessment (LCA) was prepared in conformity with ISO 21930, ISO 14025, ISO 14040, and ISO 14044 and Sub-category Product Category Rules: PCR for Single Ply Roofing Membranes (ASTM International, NSF International, 2024). This EPD is intended for business-to-business (B-to-B) audiences.

Amrize Building Envelope LLC

26 Century Boulevard, Suite 205 Nashville, Tennessee 37214

Muscle Shoals Plant

393 Denton Circle Tuscumbia, Alabama 35674

Program Operator

ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 610-832-9500 www.astm.org

EPD# 769

January 31, 2025 Valid for 5 years

LCA/EPD Developer

Climate Earth, Inc. 137 Park Place, Suite 204 Pt Richmond, CA 94801 415-391-2725 www.climateearth.com

ISO 21930; Sustainability in buildings and civil engineering works — Core rules for environmental product declarations of construction products and services (2017) serves as the core PCR; PCR for Single Ply Roofing Membranes, Version 2.0 extended (ASTM International, NSF International, 2024) serves as the sub-category PCR.

- Sub-category PCR review was conducted by Thomas P. Gloria, PhD., Industrial Ecology Consultants (<u>t.gloria@industrial-ecology.com</u>), Jack Geibig, Ecoform (<u>igeibig@ecoform.com</u>), & Bill Stough, Sustainable Research Group (<u>bstough@sustainableresearchgroup.com</u>)
- Independent verification of the declaration, according to ISO 21930:2017 and ISO 14025:2006.: ☐ internal ☑ external
- Third party verifier: Thomas P. Gloria, PhD. (t.gloria@industrial-ecology.com) Industrial Ecology Consultants
- For additional explanatory material Manufacture Representative: Sherrie MacWilliams (sherrie.macwilliams@amrize.com)
- This LCA EPD was prepared by: Melissa Díaz, Senior LCA and EPD Project Manager Climate Earth (www.climateearth.com)

PRODUCER

Amrize Building Envelope LLC delivers high-performance solutions that make the entire building envelope more sustainable for customers around the world. We are committed to raising the standards of building solutions by delivering superior quality and innovation while addressing industry needs.

Our offerings cover a comprehensive range of residential and commercial roofing, wall and lining systems, insulation, and waterproofing solutions for a variety of industries from construction to marine and aerospace. Our powerful portfolio brands include Elevate, Duro-Last, Malarkey Roofing Products, GenFlex, Gaco, and Enverge. Visit amrize.com to learn more.

Amrize's Muscle Shoals, AL facility is ISO 9000 certified, and manufactures GenFlex thermoplastic polyolefin membrane for use in commercial roofing systems. The facility is 254,000 square feet and opened in 2000.

PRODUCT: GenFlex EZ TPO Fleece Back Membrane

GenFlex EZ TPO Fleece Back combines the durability of a single-ply membrane with an external backing of eight-ounce, non-woven polyester to offer an additional internal and external reinforcement for puncture resistance. GenFlex EZ TPO Fleece Back is available in reflective white, tan or gray, which can help reduce a building's cooling requirements. In addition, the membrane provides weatherability and strong resistance to UV rays and common rooftop chemicals. GenFlex EZ TPO Fleece Back can also add LEED points. GenFlex EZ TPO Fleece Back membranes manufactured at the Muscle Shoals facility do not contain hazardous materials.

FIGURE 1

GenFlex EZ TPO Fleece Back Membrane

The products covered in this EPD have the following Performance Properties & Related Standards

TABLE 1 **Performance Properties & Related Standards**

PROPERTIES	TEST METHOD	PERFORMANCE MINIMUM	TYPICAL PERFORMANCE XR 100: 45 mil	TYPICAL PERFORMANCE XR 115: 60 mil	TYPICAL PERFORMANCE XR 115: 80 mil
Overall Thickness (Thickness Above Fleece)	D 751	0.039* (1.0 mm)	0.045" (1.14 mm) ± 10%	0.060" (1.52 mm) ± 10%	0.080" (2.03 mm) ± 10%
Coating Over Scrim	D 7635	0.015* (0.38 mm)	0.017" (0.43 mm)	0.021" (0.53 mm)	0.033" (0.84 mm)
Breaking Strength	D 751, Grab Method	220 lbf (979 N)	340 lbf (1,512 N)	390 lbf (1735 N)	460 lbf (2,046 N)
Elongation of Reinforcement Break	D 751, Grab Method	15%	25%	25%	25%
Tearing Strength	D 751	55lbf (245N)	120 lbf (534 N)	120 lbf (534 N)	120 lbf (534 N)
Brittleness Point	D 2137	-40 °F (-40 °C)	Pass	Pass	Pass
Ozone Resistance, No Cracks	D 1149	Pass (No Cracks)	Pass	Pass	Pass
PROPERTIES AFTER HEAT AG	GING (RETAINED VALUES)	ASTM D 573*5378 h (224 days	s or 32 weeks at 240 °F (116 °C	5)	
Breaking Strength	D 751, Grab Method	90% minimum	>90%	>90%	>90%
Elongation at Break	D 751, Grab Method	90% minimum	>90%	>90%	>90%
Tearing Strength	D 751	60% minimum	>60%	>60%	>60%
Weight of Change		±1% maximum	<1%	<1%	<1%
Linear Dimension Change	D1204, 6h at 158 °F (70 °C)	±1% maximum	<1%	<1%	<1%
Water Absorption	D 471	± 3% Maximum	<3%	<3%	<3%
Weather Resistance *	G 155	10,800 kJ/m2 Minimum	>60,000 kJ/ m2	>60,000 kJ/ m2	>60,000 kJ/ m2
Puncture Resistance	FTM 101C, Method 2031				450 LBF (2,002 N)
Dynamic Puncture Resistance MD	D 5635		Pass (60 J)	Pass (65 J)	Pass (60 J)
Dynamic Puncture Resistance CD	D 5635		Pass (55 J)	Pass (65 J)	Pass (60 J)
Static Puncture Resistance			-		Pass (25 kg)
Air Permeance (Material)	<u>-</u>		el and inspected at 7X magnific		Pass

TABLE 2 **Product Components**

MATERIAL	% WEIGHTED AVERAGE COMPOSITION
Resin (TPO)	50.0 - 80.0
Flame Retardant	10.0 - 40.0
Fleece	7.0 – 22.0
Polyester Scrim	3.0 - 9.0
Stabilizer and Other Additives	1.0 - 5.0
TPO Scrap (Internally)	0.0 - 3.0

^{*176 °}F (80 °C) Black Panel, no cracking crazing when wrapped around a 3" (76.2mm) mandrel and inspected at 7X magnification

1. The ASTM 2178 values listed above are for the air permeance of the GenFlex EZ TPO Fleece Back Membrane component only.

2. When system design includes an air barrier, please consult your GenFlex Technical Services Advisor for additional roof system securement enhancements.

3. Consult the Designer / Architect, Code Agency or Authority having Jurisdiction (AHJ) for requirements regarding the selection and use of an appropriate air barrier material, and its installation into the building envelope.

LIFE CYCLE ASSESSMENT

DELCARED UNIT

The declared unit is one square meter (1 m²) of single-ply roofing membrane for a stated product thickness.

SYSTEM BOUNDARY

This EPD is a cradle-to-gate with options EPD, covering the life cycle stages indicated in Table 3. Modules C1 and C3 do not contribute to the end of life scenarios considered, so they are declared as zero.

TABLE 3
Life Cycle Product Stages

	DUCTION S			RUCTION AGE	USE STAGE				END-OF-LIFE STAGE						
Extraction and upstream production	Transport to factory	Manufacturing	Transport to site	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction / Demolition	Transport to waste processing or disposal	Waste processing	Disposal of waste
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
Χ	X	X	X	X	MND	MND	MND	MND	MND	MND	MND	X	X	X	Х

NOTE: MND = module not declared: X = module included.

CUT-OFF

Items excluded from system boundary include:

- production, manufacture and construction of manufacturing capital goods and infrastructure;
- production and manufacture of production equipment, delivery vehicles, and laboratory equipment;
- personnel-related activities (travel, furniture, and office supplies); and
- energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

COMPARISON

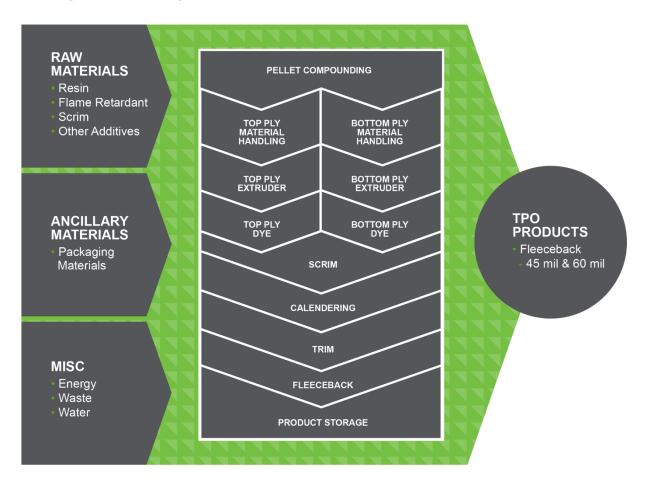
Only EPDs prepared from cradle-to-grave life-cycle results, and based on the same function, quantified by the same functional unit, and taking account of replacement based on the product reference service life (RSL) relative to an assumed building service life, can be used to assist purchasers and users in making informed comparisons between products. As this EPD is prepared from cradle-to-gate with options, this document shall not be used for comparison between products per Section 5.5 of the PCR (ASTM International, NSF International, 2024).

ALLOCATION PROCEDURE

Allocation follows the requirements and guidance of ISO 14044:2006, Clause 4.3.4; and ISO 21930:2017 section 7.2. Recycling and recycled content is modeled using the cut-off rule.

MANUFACTURING

A1-A3, PRODUCTION STAGE


Compounding Process Description

TPO compounding is a process that mixes polymer and filler materials, along with additives, to create a homogeneous compound. The materials are transferred to an extruder, which softens and compresses the material and presses it toward a die outlet that makes the pellet. The finished pellets are collected and used as the raw material in the thermoplastic olefin roofing manufacturing line. Raw materials are received by truck or rail.

TPO Roofing Manufacturing

The raw material pellets are stored in silos. The manufacturing process consists of two sets of two extruders each, one set of extruders processes the top layer of the membrane, and the other set of extruders processes the bottom layer. Each set of extruders melts polyethylene/polypropylene pellets and extrudes them into a continuous sheet of polymer that encases a layer of fabric. The sheet of polymer passes through a calendering process that compresses and flattens the membrane. After the calendering process, the sheet is cooled, and the fleeceback fabric is applied. The edges are trimmed to a specific membrane width and the trimmed edges are ground and reused in the manufacturing process. The membrane is wound into rolls and packaged as a finished product.

FIGURE 2
Process Flow Diagram of TPO Manufacturing

A4, TRANSPORTATION

An average truck and transport distance of 725 miles from the plant to the construction site is assumed.

A5, INSTALLATION

The installation scenario includes the energy and ancillary materials typically consumed to apply TPO fleece back membrane on a standard-shaped roof of 25,000 square feet, with a total TPO membrane weight of 7,275 pounds. Waste from packaging includes cardboard, paper, and wood pallets.

B1 - B5 USE STAGE

As defined in the PCR, the Building Estimated Service Life (ESL) is 75 years. Use stage information modules have been omitted from this LCA study.

C1 - C4 END-OF-LIFE STAGE

At the end of building service life and during roof replacement, the TPO roofing membranes may be reused, recovered and repurposed, or disposed. This study does not take reuse and recovery into account, and it is assumed that insulation is removed when the building is decommissioned and disposed of in a landfill, for which an average distance and specific end of life LCI is applied. Therefore, it is assumed zero impacts come from demolition and waste processing.

LIFE CYCLE ASSESSMENT RESULTS

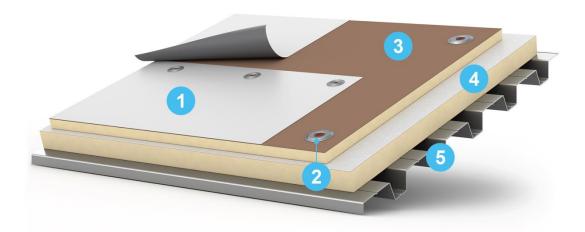
This declaration is cradle-to-gate with options. As discussed in the Life Cycle Assessment System Boundaries section, Modules C1 and C3 do not contribute to impacts and are declared as zero. Modules B1-B7 and Optional Module D - Benefits and Loads Beyond the System Boundary – are not included in this LCA study. Only relevant stages are presented with results, to make it easier to follow. Table 4 presents results for the declared unit, 1 m² of single-ply roofing membrane, of the stated product thicknesses.

TABLE 4: GenFlex EZ TPO Membrane, Fleece Back Products, per 1 m²

IMPACT ASSESSMENT UNIT	PRODUCTION (A1-A3)	TRANSPORT (A4)	INSTALLATION (A5)	TRANSPORT TO DISPOSAL OF WASTE (C2)	DISPOSAL OF WASTE (C4)
Global warming potential (GWP) ¹ ;	kg CO₂ eq			(==/	
45 mils	4.59	0.15	0.11	7.01E-03	9.80E-03
60 mils	6.15	0.20	0.11	9.40E-03	1.31E-02
Depletion potential of the stratosp	heric ozone layer (ODP); kg	CFC-11 eq			
45 mils	1.58E-07	6.16E-12	1.36E-08	2.93E-13	3.67E-09
60 mils	2.12E-07	8.26E-12	1.36E-08	3.93E-13	4.92E-09
Eutrophication potential (EP); kg N	•				
45 mils	4.61E-03	1.10E-04	1.04E-03	4.66E-06	1.01E-05
60 mils	6.18E-03	1.40E-04	1.04E-03	6.25E-06	1.35E-05
80 mils	8.00E-03	1.90E-04	1.04E-03	8.08E-06	1.75E-05
Acidification potential of soil and		•			
45 mils	1.48E-02	1.80E-03	1.50E-04	7.81E-05	7.00E-05
60 mils	1.98E-02	2.41E-03	1.50E-04	1.00E-04	9.38E-05
Formation potential of tropospheri	, , , , , , , , , , , , , , , , , , , ,	4.505.00	4.405.00	1.075.00	0.005.00
45 mils	0.21	4.59E-02	1.43E-03	1.97E-03	2.00E-03
60 mils Resource Use	0.28	6.16E-02	1.43E-03	2.64E-03	2.68E-03
Abiotic depletion potential for non	fossil minoral resources (A)	DP \: ka Sh oa			
45 mils	3.36E-06	0.00	8.02E-09	0.00	1.01E-08
60 mils	4.51E-06	0.00	8.02E-09	0.00	1.36E-08
Abiotic depletion potential for foss			0.02E-09	0.00	1.30E-06
45 mils	119	2.09	1.15	9.94E-02	0.24
60 mils	159	2.80	1.15	0.13	0.32
Renewable primary energy resource			1.10	0.10	0.02
45 mils	2.04	0.00	6.80E-03	0.00	1.61E-03
60 mils	2.74	0.00	6.80E-03	0.00	2.16E-03
Renewable primary resources as r		0.00	0.002 00	0.00	2.102 00
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
Non-renewable primary resources	as energy (fuel) (NRPRE)2; I	/J, NCV			
45 mils	129	2.09	1.19	9.94E-02	0.24
60 mils	173	2.80	1.19	0.13	0.33
Non-renewable primary resources	as material (NRPRM)2; MJ, N	ICV			
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
Consumption of fresh water (FW) ²	; m ³				
45 mils	8.38E-02	0.00	3.20E-04	0.00	2.60E-04
60 mils	0.11	0.00	3.20E-04	0.00	3.50E-04
Secondary Material, Fuel and Reco	overed Energy				
Secondary Materials (SM) ² ; kg					
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
Renewable secondary fuels (RSF) ²					
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
Non-renewable secondary fuels (N					
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
Recovered energy (RE) ³ ; MJ, NCV	0.00	0.00	0.00	0.00	0.00
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
Waste & Output Flows Hazardous waste disposed (HW) ³ ;	Ira				
45 mils	0.00	0.00	0.00	0.00	0.00
45 mils	0.00	0.00	0.00	0.00	0.00
00 111115	0.00	0.00	0.00	0.00	0.00

 $^{^{1}}$ GWP 100; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5).

CO2 from biogenic secondary fuels used in kiln are climate-neutral (CO2 sink = CO2 emissions), ISO 21930, 7.2.7.
² Calculated per ACLCA ISO 21930 Guidance.


³ Calculated per ACLCA ISO 21930 Guidance.

IMPACT ASSESSMENT UNIT	PRODUCTION (A1-A3)	TRANSPORT (A4)	INSTALLATION (A5)	TRANSPORT TO DISPOSAL OF WASTE (C2)	DISPOSAL OF WASTE (C4)	
Non-hazardous waste disposed (N	IHWD) ³ ; kg					
45 mils	0.12	0.00	0.11	0.00	1.30	
60 mils	0.16	0.00	0.11	0.00	1.75	
High-level radioactive waste (HLR)	W)³; kg					
45 mils	3.29E-09	0.00	1.88E-11	0.00	2.73E-12	
60 mils	4.41E-09	0.00	1.88E-11	0.00	3.66E-12	
Intermediate and low-level radioac	ctive waste (ILLRW)3; kg					
45 mils	1.59E-08	0.00	9.06E-11	0.00	1.31E-11	
60 mils	2.13E-08	0.00	9.06E-11	0.00	1.75E-11	
Components for reuse (CRU) ³ ; kg						
45 mils	0.00	0.00	0.00	0.00	0.00	
60 mils	0.00	0.00	0.00	0.00	0.00	
Materials for recycling (MR) ³ ; kg						
45 mils	3.33E-03	0.00	0.00	0.00	0.00	
60 mils	4.46E-03	0.00	0.00	0.00	0.00	
Materials for energy recovery (ME	R) ³ ; kg					
45 mils	0.00	0.00	0.00	0.00	0.00	
60 mils	0.00	0.00	0.00	0.00	0.00	
Recovered energy exported from t	the product system (EE)3; MJ	J, NCV				
45 mils	0.00	0.00	0.00	0.00	0.00	
60 mils	0.00	0.00	0.00	0.00	0.00	

^{*}Emerging LCA impact categories and inventory items are still under development and can have high levels of uncertainty that preclude international acceptance pending further development. Use caution when interpreting data in these categories. The following optional indicators are not reported and also have high levels of uncertainty: Land use related impacts, toxicological aspects, and emissions from land use change

**Only EPDs prepared from cradle-to-grave life-cycle results and based on the same function, quantified by the same functional unit, and taking account of replacement based on the product reference service life (RSL) relative to an assumed building service life, can be used to assist purchasers and users in making informed comparisons between products.

ADDITIONAL ENVIRONMENTAL INFORMATION

TPO Fleece Back Roof System

1. GenFlex EZ TPO Fleece Back Membrane

• White GenFlex EZ TPO membrane achieves an initial Solar Reflectance Index (SRI) rating of 98 and a three-year aged value of 84, as determined by the Cool Roof Ratings Council (CRRC) through testing.

2. Metal Plates and Fasteners

3. HD Cover Board (optional) - Mechanically Attached or Adhered

4. ISO GL or ISO CG Insulation – Mechanically Attached or Adhered

- All GenFlex polyisocyanurate insulations use EPA accepted blowing agents. GenFlex HD Cover Board, ISO GL, and ISO CG insulation products incorporate a HCFC-free blowing agent that does not contribute to ozone layer depletion (ODP-free).
- The thermal performance of ISO GL polyisocyanurate insulation is up to 40% better than major competitors when tested by an independent third party in cold temperature 40°F (4°C) applications according to ASTM C1289 standards. The increased R-value per inch means better thermal performance from the same roofing systems using the same amount of insulation compared to leading competitive products on the market today.

5. Steel Deck

REFERENCES

ACLCA. (2019). ACLCA Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017.

ASTM International. (April 2020). General Program Instructions.

ecoinvent. (2021). The ecoinvent Database v.3.8. Zurich, Switzerland: The Swiss Centre for Life Cycle Inventories.

ISO 14020. (2000). Environmental labels and declarations – General principles.

ISO 14025. (2006). Environmental labels and declarations, Type III environmental declarations, Principles and procedures.

ISO 14040. (2006). ISO 14040: Environmental Management - Life Cycle Assessment - Principles and Framework.

ISO 14044. (2006/Amd 1:2017/Amd 2:2020). Environmental management - Life cycle assessment - Requirements and guidelines

ISO 21930. (2017). ISO 21930; Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

Long Trail Sustainability. (2021). DATASMART (ES-EI Database). Huntington, VT: Long Trail Sustainability.

National Renewable Energy Laboratory. (2015). U.S. Life-Cycle Inventory (LCI) database.

NSF International, ASTM International. (2024). Product Category Rule for Single Ply Roofing Membranes (Version 2.0 extended).

PRé Sustainability. (2020). SimaPro Vers. 9.1.0.8. www.pre-sustainability.com/simapro.

US EPA. (2014). Tool for the Reduction of Assessment of Chemical and Other Environmental Impacts (TRACI).

US EPA. (2022). Emissions & Generation Resource Integrated Database (eGRID).

26 Century Boulevard, Suite 20

Nashville, TN 37214

1.800.428.4442

GenFlex.com