

INSULATED PRECAST CONCRETE REGIONALIZED INDUSTRY AVERAGE EPD

According to ISO 14025:2006 and ISO 21930:2017

ASTM International Certified Environmental Product Declaration

This is a business-to-business Type III environmental product declaration for Insulated Precast as produced by PCI. This declaration has been prepared in accordance with ISO 14025:2006 and ISO 21930:2017, the governing precast concrete category rules and ASTM international's EPD program operator rules.

The intent of this document is to further the development of environmentally compatible and more sustainable construction products by providing comprehensive environmental information related to potential impacts of Insulated precast concrete in accordance with international standards.

Environmental Product Declaration Summary

EPD Owner	
Precast/Prestressed PCI Concrete Institute	Precast/Prestressed Concrete Institute 8770 W Bryn Mawr Ave Suite 1150, Chicago, IL 60631, United States www.pci.org
Product Group and Name	Insulated Precast concrete products
Product Definition	Insulated Precast Concrete (UN CPC 3755) is a construction material created by casting concrete into reusable molds and curing it in a controlled setting. It provides insulation, improving energy efficiency and thermal performance, while also offering decorative and durable elements for both exterior and interior applications.
Product Category Rules	NSF/ASTM International, PCR for Precast Concrete, V3.0, May 2021.
Certification Period	05.01.2025 - 05.01.2030
Declared Unit	1 metric tonne (1,000 kg) of insulated precast concrete
ASTM Declaration Number	EPD 963

EPD Program Operator	ASTM International
Declaration Holder	Precast/Prestressed Concrete Institute
facilities spread across 11 regions in the Unite	oncrete as a product group manufactured by 64 PCI member ed States. Activity stages or information modules covered or shipment from the point of manufacture (modules A1 to A3). s-to-Business (B-to-B) communication.
foundation walls, and precast slabs, offering be	panels, building envelopes, insulated façade systems, oth thermal performance and structural integrity. Follows Section 9; Content of an EPD, NSF/ASTM International
This EPD was independently verified	Timothy Brooke
by ASTM in accordance with ISO 14025:	ASTM International 100 Barr Harbor Dr. West Conshohocken, PA 19428
Internal External	·
X	tbrooke@astm.org
EPD Project Report Information	
EPD Project Report	A Cradle-to-Gate LCA of Insulated Precast Concrete Products produced by PCI members, March 2025
Prepared by	WAP Sustainability Consulting LTD 1701 Market Street Chattanooga, TN 37408
WAP SUSTAINABILITY CONSULTING	https://wapsustainability.com/
This EPD project report was independently verified by in accordance with ISO 14025 and the reference PCR:	Thomas P. Gloria, Ph. D. Industrial Ecology Consultants 35 Bracebridge Rd. Newton, MA 02459-1728 t.gloria@industrial-ecology.com
This EPD was prepared using WAP's Theta C	oncrete EPD Tool v1
PCR Information	

PCR Information		
Program Operator	NSF and ASTM International	
Reference PCR	NSF/ASTM International, PCR for Precast Concrete, V3.0, May 2021.	
PCR review was conducted by:	Dr. Thomas Gloria, Industrial Ecology Consultants Mr. Bill Stough, Bill Stough, LCC Dr. Michael Overcash, Environmental Clarity	

1 PRODUCT IDENTIFICATION

1.1 PRODUCT DEFINITION

Precast concrete (UN CPC 3755) is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site, and lifted into place. In contrast, standard concrete is placed into site-specific forms and cured on site. In order of greatest mass, the Insulated Precast concrete product covered in this EPD are composed of Aggregates, Portland Cement, Portland Limestone cement, Batch water, fly ash, Rebar, Welded wire reinforcement, Steel and including other Admixtures/ SCMs.

Insulated precast products can be conventionally reinforced or prestressed. It typically uses steel reinforcement elements such as rebar, welded wire mesh and other insulation materials. These reinforcements contribute to the material's durability while maintaining its thermal performance. Insulated precast concrete provides energy-efficient and visually appealing solutions for a variety of building applications.

2 PRODUCT APPLICATION

Insulated precast concrete offers a combination of structural strength, energy efficiency, and design versatility. It consists of multiple concrete layers with an insulating core, reducing heat transfer and enhancing building performance. Commonly used in cladding panels, façade elements, and load-bearing walls, it provides both thermal insulation and a durable, aesthetically pleasing finish. By minimizing thermal bridging, insulated precast concrete improves energy efficiency and indoor comfort. Its adaptability allows for various surface textures, colors, and architectural details. Additionally, it can be reinforced or prestressed to enhance strength and longevity, making it a sustainable choice for modern construction.

3 DECLARED UNIT

The declared unit is 1 metric tonne of insulated precast concrete products.

This study for the Insulated precast concrete products considers regional factors for accurate results, covering all 11 PCI regions in the United States as derived from LCI data for the reference year 2023. Two sets of regions were combined to anonymize data, ensuring a comprehensive analysis that reflects specific conditions and highlights supply chain improvement opportunities. The regions assessed in this study are shown in Figure 1.

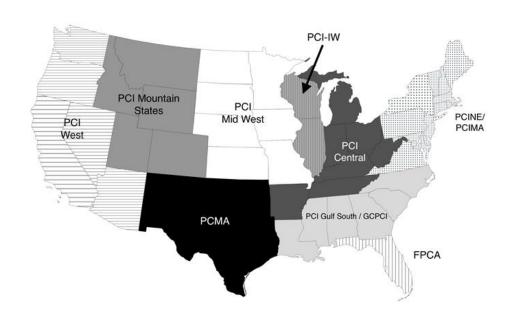


Figure 1: PCI Production Regions Considered in this Study.

4 PRODUCTION STAGE

Figure 2 Production stage system boundary

					0	,	Todaci		87-		,					
Pro	oduct	ion	Constr	ruction				Use					End c	of Life		Benefits & Loads Beyond System Boundary
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	C3	C4	D
Raw Material Supply	Transport	Manufacturing	Transport to Site	Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction	Transport	Waste Processing	Disposal	Reuse, Recovery, Recycling Potential
Х	Х	Χ	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

X = Module Included in LCA Report, MND = Module not Declared

Figure 2 shows the production stage system boundary for the declared product system.

The Production Stage includes the following processes:

- ➤ A1 Extraction and processing of raw materials, including fuels used in product production and transport within the manufacturing process (A3);
- A2 Average or specific transportation of raw materials from the extraction site or source to manufacturing site, inclusive of empty backhauls (where applicable);
- ➤ A3 Manufacturing of each precast product including all energy and materials required and all emissions and wastes produced;
- Average or specific transportation from manufacturing site to recycling/reuse/landfill for preconsumer wastes and unutilized by-products from manufacturing, including empty backhauls (where applicable); and
- Final disposition of pre-consumer wastes inclusive of transportation.

The Production Stage excludes the following processes:

- Production, manufacture, and construction of manufacturing capital goods and infrastructure;
- > Formwork;
- Production and manufacture of production equipment, delivery vehicles, and laboratory equipment:
- Personnel related activities (travel, office operations and supplies); and
- Energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

5 LIFE CYCLE INVENTORY

5.1 DATA COLLECTION AND REPRESENTATIVENESS

All gate-to-gate LCI flow data for energy, total water use, emissions and waste generated were used to determine an overall per unit precast plant operations profile. These per unit gate-to-gate operational flows were used to calculate the plant production effects for Insulated Precast Concrete. Each plant also provided material consumption data that was specific to Insulated Precast production which was used to develop an average composition on a production weighted basis.

5.2 CUT OFF RULES, ALLOCATION RULES AND DATA QUALITY REQUIREMENTS

Cut-off rules, as specified in NSF PCR for precast concrete: 2021, Section 7.1.8 were applied. All input/output flow data reported by the participating member facilities were included in the LCI modeling. None of the reported flow data were excluded based on the cut-off criteria. No substances with hazardous and toxic properties that pose a concern for human health and/or the environment were identified in the framework of this EPD.

Allocation procedures observed the requirements and guidance of ISO 14044:2006, clause 4.3 and those specified in NSF PCR for precast concrete, section 7.1. A small number of the facilities also produced other specialty precast products – a co-product - and in such instances "mass" allocation

was used to allocate facility LCI environmental flows (inputs and outputs) across the co-products for those facilities prior to calculating and rolling up the weighted average LCI flows for the gate-to-gate process and individual product groups.

In addition, the following allocation rules are applied:

- Allocation related to transport is based on the mass and distance of transported inputs;
- The NSF sub-category PCR recognizes fly ash, silica fume and granulated bast furnace slag as recovered materials and thus the environmental impacts allocated to these materials are limited to the treatment and transportation required to use as a precast concrete material input. That is, any allocations before reprocessing are allocated to the original product;
- The environmental flows related to the disposal of the manufacturing (pre-consumer) solid and liquid waste are allocated to module A3 Manufacturing.

Data quality requirements, as specified in NSF's Precast Concrete PCR: 2021, section 7.1.9, were observed. This section also describes the achieved data quality relative to the ISO 14044:2006 requirements. Data quality is judged on the basis of its precision (measured, calculated or estimated), completeness (e.g., unreported emissions), consistency (degree of uniformity of the methodology applied within a study serving as a data source) and representativeness (geographical, temporal, and technological).

Precision: The precision of the data is considered high. The participating member companies through measurement and calculation collected primary data on their production of Insulated precast concrete. For accuracy the LCA team individually validated these plant gate-to-gate input and output data.

Completeness: All relevant, specific processes, including inputs (raw materials, energy and ancillary materials) and outputs (emissions and production volume) were considered and modeled to represent Insulated precast production. The relevant background materials and processes were taken from the US LCI Database, Ecoinvent v 3.4 LCI database for Canada, United States and/or global and modeled in WAP's pre-verified Theta Concrete EPD Tool v2 (February 2022).

Consistency: The consistency of the model is considered high. The bills of materials provided by the product engineers were developed for multiple internal departments use and are maintained regularly. The LCA practitioner also cross-referenced the installation documents and other relevant information to ensure consistency. Furthermore, modeling assumptions were consistent across the model, with preference given towards Ecoinvent data, where available.

Reproducibility: This study is considered reproducible. Descriptions of the data and assumptions through this report would allow a practitioner to utilize the LCA tool to generate results for the products. A high level of transparency is provided throughout the LCA background report

(publicly available) as the weighted average LCI profile for each product sub-group is presented for the declared product. Key primary (manufacturer specific) and secondary (generic) LCI data sources are also summarized in the LCA background report. The provision of more detailed data to allow full external reproducibility was not possible due to reasons of confidentiality.

Representativeness: The representativeness of the data is summarized as follows.

- *Time related coverage* of the precast manufacturing process primary data collected: 2023 (12 months).
- Generic data: the most appropriate LCI datasets were used as found in the US LCI (adjusted) Database, Ecoinvent v.3.4 database for United States, Canada and global.
- **Geographical coverage**: the geographical coverage is the United States.
- Technological coverage: typical or average.

6 LIFE CYCLE ASSESSMENT

6.1 RESULTS OF THE LIFE CYCLE ASSESSMENT

This section summarizes the results of the life cycle impact assessment (LCIA) based on the cradle-to-gate life cycle inventory inputs and outputs analysis. The results are calculated on the basis of one metric tonne (1,000 kg) of Insulated Precast Concrete products. The production results are delineated by information module (A1 – Raw material supply), (A2 – Raw material transport), and (A3 – precast core manufacturing).

As per NSF PCR for precast concrete:2021, Section 7.3, the US EPA Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), version 2.1, 2012 impact categories are used as they provide a North American context for the mandatory category indicators to be included in this EPD. These are relative expressions only and do not predict category impact end-points, the exceeding of thresholds, safety margins or risks. Total primary and sub-set energy consumption was compiled using a cumulative energy demand model. Material resource consumption and generated waste reflect cumulative life cycle inventory flow information. To promote uniform guidance on the data collection, calculation and reporting of results, the ISO 21930 was used.

Table 1: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the FPCA Region

Indicator	A1-A3	A1	A2	А3					
Environmental Impacts									
GWP [kg CO2 eq]	3.27E+02	2.20E+02	7.59E+01	3.13E+01					
ODP [kg CFC 11 eq]	2.72E-05	2.45E-05	3.17E-09	2.65E-06					
EP [kg N eq]	3.91E-01	2.21E-01	5.64E-02	1.13E-01					
AP [kg SO2 eq]	1.87E+00	7.94E-01	9.53E-01	1.28E-01					
POCP [kg O3 eq]	3.65E+01	8.87E+00	2.50E+01	2.68E+00					
Use of Primary Resources									
RPRE [MJ]	1.13E+02	1.09E+02	0.00E+00	4.70E+00					
RPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRPRE [MJ]	3.25E+03	1.60E+03	1.14E+03	5.15E+02					
NRPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Use of Secondary Resources									
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRSF [MJ]	8.42E+01	8.42E+01	0.00E+00	0.00E+00					
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Abiotic Depletion Potential									
ADPF [MJ]	2.55E+03	1.06E+03	1.08E+03	4.19E+02					
ADPE [kg Sb eq]	2.83E-04	2.63E-04	0.00E+00	2.03E-05					
Consumption of Freshwater									
FW [m3]	1.97E+00	1.20E+00	0.00E+00	7.69E-01					
Waste and Output Flows									
HWD [kg]	1.03E-01	6.99E-02	0.00E+00	3.29E-02					
NHWD [kg]	2.20E+01	3.75E+00	0.00E+00	1.83E+01					
HLRW [m3]	1.61E-03	1.61E-03	0.00E+00	3.16E-08					
ILLRW [m3[7.48E-04	7.48E-04	0.00E+00	3.05E-07					
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
EE [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Additional	inventory parameters for tra	nsparency						
CCE [kg CO2 eq]	7.72E+01	7.72E+01	0.00E+00	0.00E+00					

Table 2: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the GCPCI and PCI Gulf South Region

Indicator	A1-A3	A1	A2	A3					
	•	Environmental Impacts							
GWP [kg CO2 eq]	2.93E+02	2.17E+02	5.18E+01	2.46E+01					
ODP [kg CFC 11 eq]	2.65E-05	2.49E-05	2.15E-09	1.54E-06					
EP [kg N eq]	4.33E-01	2.47E-01	3.94E-02	1.46E-01					
AP [kg SO2 eq]	1.26E+00	4.53E-01	6.69E-01	1.34E-01					
POCP [kg O3 eq]	2.89E+01	8.34E+00	1.77E+01	2.93E+00					
Use of Primary Resources									
RPRE [MJ]	8.75E+01	8.13E+01	0.00E+00	6.12E+00					
RPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRPRE [MJ]	2.55E+03	1.36E+03	7.75E+02	4.12E+02					
NRPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Use of Secondary Resources									
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRSF [MJ]	9.86E+01	9.86E+01	0.00E+00	0.00E+00					
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Abiotic Depletion Potential									
ADPF [MJ]	2.03E+03	1.00E+03	7.31E+02	3.00E+02					
ADPE [kg Sb eq]	1.30E-04	1.17E-04	0.00E+00	1.30E-05					
		Consumption of Freshwater							
FW [m3]	1.33E+00	1.04E+00	0.00E+00	2.87E-01					
		Waste and Output Flows							
HWD [kg]	4.53E-02	4.53E-02	0.00E+00	0.00E+00					
NHWD [kg]	2.15E+01	5.19E+00	0.00E+00	1.63E+01					
HLRW [m3]	1.60E-03	1.60E-03	0.00E+00	4.57E-08					
ILLRW [m3[4.72E-04	4.72E-04	0.00E+00	4.25E-07					
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
EE [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Additiona	l inventory parameters for tra	nsparency						
CCE [kg CO2 eq]	9.05E+01	9.05E+01	0.00E+00	0.00E+00					

Table 3: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the PCI Central Region

RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.22E+01 9.22E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00	Indicator	A1-A3	A1	A2	А3					
ODP kg CFC 11 eq 2.62E-05 2.47E-05 1.49E-09 1.47E-06	Environmental Impacts									
EP [kg N eq 3.92E-01 2.36E-01 2.51E-02 1.31E-01 AP [kg SO2 eq 1.04E+00 4.76E-01 4.22E-01 1.46E-01 POCP [kg O3 eq 1.99E+01 8.06E+00 1.08E+01 1.12E+00	GWP [kg CO2 eq]	2.74E+02	2.08E+02	3.54E+01	3.02E+01					
AP [kg SO2 eq] 1.04E+00 4.76E-01 4.22E-01 1.46E-01 POCP [kg O3 eq] 1.99E+01 8.06E+00 1.08E+01 1.12E+00	ODP [kg CFC 11 eq]	2.62E-05	2.47E-05	1.49E-09	1.47E-06					
Nemark N	EP [kg N eq]	3.92E-01	2.36E-01	2.51E-02	1.31E-01					
Use of Primary Resources RPRE [MI] 8.73E+01 8.15E+01 0.00E+00 5.81E+00	AP [kg SO2 eq]	1.04E+00	4.76E-01	4.22E-01	1.46E-01					
RPRE [MJ] 8.73E+01 8.15E+01 0.00E+00 5.81E+00	POCP [kg O3 eq]	1.99E+01	8.06E+00	1.08E+01	1.12E+00					
RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 2.38E+03 1.34E+03 5.37E+02 5.06E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.22E+01 9.00E+00 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPE [kg Sb eq] 1.88E+03 9.79E+02 5.07E+02 3.90E+02 ADPE [kg Sb eq] 1.50E-04 1.37E-04 0.00E+00 1.24E-05 Consumption of Freshwater FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03	Use of Primary Resources									
NRPRE [MJ] 2.38E+03 1.34E+03 5.37E+02 5.06E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources	RPRE [MJ]	8.73E+01	8.15E+01	0.00E+00	5.81E+00					
NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00	RPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Use of Secondary Resources	NRPRE [MJ]	2.38E+03	1.34E+03	5.37E+02	5.06E+02					
SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.22E+01 9.22E+01 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.88E+03 9.79E+02 5.07E+02 3.90E+02 ADPE [kg Sb eq] 1.50E-04 1.37E-04 0.00E+00 1.24E-05 Consumption of Freshwater FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3] 4.75E-04 4.75E-04 0.00E+00 3.93E-07	NRPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.22E+01 9.22E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ***Babe		Use of Secondary Resources								
NRSF [MJ] 9.22E+01 9.22E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.88E+03 9.79E+02 5.07E+02 3.90E+02 ADPE [kg Sb eq] 1.50E-04 1.37E-04 0.00E+00 1.24E-05 Consumption of Freshwater FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3] 4.75E-04 4.75E-04 0.00E+00 3.93E-07	SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Abiotic Depletion Potential ADPF [MJ] 1.88E+03 9.79E+02 5.07E+02 3.90E+02 ADPE [kg Sb eq] 1.50E-04 1.37E-04 0.00E+00 1.24E-05 Consumption of Freshwater FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3] 4.75E-04 4.75E-04 0.00E+00 3.93E-07	NRSF [MJ]	9.22E+01	9.22E+01	0.00E+00	0.00E+00					
ADPF [MJ] 1.88E+03 9.79E+02 5.07E+02 3.90E+02 ADPE [kg Sb eq] 1.50E-04 1.37E-04 0.00E+00 1.24E-05 Consumption of Freshwater FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3] 4.75E-04 4.75E-04 0.00E+00 3.93E-07	RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
ADPE [kg Sb eq] 1.50E-04 1.37E-04 0.00E+00 1.24E-05 Consumption of Freshwater FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3] 4.75E-04 4.75E-04 0.00E+00 3.93E-07	Abiotic Depletion Potential									
Consumption of Freshwater FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3[4.75E-04 4.75E-04 0.00E+00 3.93E-07	ADPF [MJ]	1.88E+03	9.79E+02	5.07E+02	3.90E+02					
FW [m3] 1.41E+00 1.04E+00 0.00E+00 3.69E-01 Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3[4.75E-04 4.75E-04 0.00E+00 3.93E-07	ADPE [kg Sb eq]	1.50E-04	1.37E-04	0.00E+00	1.24E-05					
Waste and Output Flows HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3[4.75E-04 4.75E-04 0.00E+00 3.93E-07	Consumption of Freshwater									
HWD [kg] 4.54E-02 4.54E-02 0.00E+00 0.00E+00 NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3[4.75E-04 4.75E-04 0.00E+00 3.93E-07	FW [m3]	1.41E+00	1.04E+00	0.00E+00	3.69E-01					
NHWD [kg] 3.82E+01 4.70E+00 0.00E+00 3.35E+01 HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3] 4.75E-04 4.75E-04 0.00E+00 3.93E-07	Waste and Output Flows									
HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 4.18E-08 ILLRW [m3] 4.75E-04 4.75E-04 0.00E+00 3.93E-07	HWD [kg]	4.54E-02	4.54E-02	0.00E+00	0.00E+00					
ILLRW [m3[4.75E-04 4.75E-04 0.00E+00 3.93E-07	NHWD [kg]	3.82E+01	4.70E+00	0.00E+00	3.35E+01					
	HLRW [m3]	1.60E-03	1.60E-03	0.00E+00	4.18E-08					
CRU [kg] 0.00E+00 0.00E+00 0.00E+00	ILLRW [m3[4.75E-04	4.75E-04	0.00E+00	3.93E-07					
	CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MR [kg] 0.00E+00 0.00E+00 0.00E+00	MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MER [kg] 0.00E+00 0.00E+00 0.00E+00	MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
EE [kg] 0.00E+00 0.00E+00 0.00E+00	EE [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Additional inventory parameters for transparency		Additional	inventory parameters for tra	insparency						
CCE [kg CO2 eq] 8.46E+01 8.46E+01 0.00E+00 0.00E+00	CCE [kg CO2 eq]	8.46E+01	8.46E+01	0.00E+00	0.00E+00					

Table 4: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the PCI-IW

Composite Comp										
ODP [kg CFC 11 eq] 2.60E-05 2.47E-05 6.84E-10 1.30E-06 EP [kg N eq] 3.40E-01 2.37E-01 1.21E-02 9.07E-02 AP [kg SO2 eq] 8.95E-01 4.89E-01 2.05E-01 2.01E-01 POCP [kg O3 eq] 1.48E+01 8.13E+00 5.33E+00 1.39E+00 Use of Primary Resources RPRE [MJ] 8.81E+01 8.29E+01 0.00E+00 5.19E+00 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.36E+03 2.46E+02 5.70E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02										
EP [kg N eq] 3.40E-01 2.37E-01 1.21E-02 9.07E-02 AP [kg SO2 eq] 8.95E-01 4.89E-01 2.05E-01 2.01E-01 POCP [kg O3 eq] 1.48E+01 8.13E+00 5.33E+00 1.39E+00 Use of Primary Resources RPRE [MJ] 8.81E+01 8.29E+01 0.00E+00 5.19E+00 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 2.17E+03 1.36E+03 2.46E+02 5.70E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.8SE+02 2.32E+02 4.73E+02	/P [kg CO2 eq]									
AP [kg SO2 eq] 8.95E-01 4.89E-01 2.05E-01 2.01E-01 POCP [kg O3 eq] 1.48E+01 8.13E+00 5.33E+00 1.39E+00 Use of Primary Resources RPRE [MJ] 8.81E+01 8.29E+01 0.00E+00 5.19E+00 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.36E+03 1.36E+03 2.46E+02 5.70E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential	P [kg CFC 11 eq]									
POCP [kg 03 eq] 1.48E+01 8.13E+00 5.33E+00 1.39E+00 Sus of Primary Resources	[kg N eq]									
See of Primary Resources See of Primary Resources	[kg SO2 eq]									
RPRE [MJ] 8.81E+01 8.29E+01 0.00E+00 5.19E+00 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 2.17E+03 1.36E+03 2.46E+02 5.70E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	CP [kg O3 eq]									
RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 2.17E+03 1.36E+03 2.46E+02 5.70E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	Use of Primary Resources									
NRPRE [MJ] 2.17E+03 1.36E+03 2.46E+02 5.70E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	RE [MJ]									
NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	RM [MJ]									
SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	PRE [MJ]									
SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	PRM [MJ]									
RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	Use of Secondary Resources									
NRSF [MJ] 9.24E+01 9.24E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	[kg]									
RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	- [MJ]									
Abiotic Depletion Potential ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	SF [MJ]									
ADPF [MJ] 1.69E+03 9.85E+02 2.32E+02 4.73E+02	[MJ]									
	Abiotic Depletion Potential									
ADPE [kg Sb eq] 1.53E-04 1.41E-04 0.00E+00 1.16E-05	PF [MJ]									
	PE [kg Sb eq]									
Consumption of Freshwater										
FW [m3] 2.17E+00 1.05E+00 0.00E+00 1.12E+00	[m3]									
Waste and Output Flows										
HWD [kg] 4.66E-02 4.66E-02 0.00E+00 0.00E+00	/D [kg]									
NHWD [kg] 9.65E+00 4.70E+00 0.00E+00 4.95E+00	WD [kg]									
HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 2.84E-08	RW [m3]									
ILLRW [m3[4.88E-04 4.88E-04 0.00E+00 2.62E-07	RW [m3[
CRU [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00	U [kg]									
MR [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00	[kg]									
MER [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00	R [kg]									
EE [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00	[kg]									
Additional inventory parameters for transparency										
CCE [kg CO2 eq] 8.48E+01 8.48E+01 0.00E+00 0.00E+00	E [kg CO2 eq]									

Table 5: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the PCI Midwest

Indicator	A1-A3	A1	A2	А3					
Environmental Impacts									
GWP [kg CO2 eq]	2.99E+02	2.09E+02	4.33E+01	4.69E+01					
ODP [kg CFC 11 eq]	2.66E-05	2.47E-05	1.82E-09	1.83E-06					
EP [kg N eq]	4.29E-01	2.38E-01	3.08E-02	1.60E-01					
AP [kg SO2 eq]	1.28E+00	5.08E-01	5.16E-01	2.53E-01					
POCP [kg O3 eq]	2.29E+01	8.15E+00	1.32E+01	1.52E+00					
Use of Primary Resources									
RPRE [MJ]	9.15E+01	8.44E+01	0.00E+00	7.12E+00					
RPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRPRE [MJ]	2.81E+03	1.36E+03	6.56E+02	7.88E+02					
NRPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Use of Secondary Resources								
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRSF [MJ]	9.12E+01	9.12E+01	0.00E+00	0.00E+00					
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Abiotic Depletion Potential									
ADPF [MJ]	2.24E+03	9.92E+02	6.19E+02	6.32E+02					
ADPE [kg Sb eq]	1.62E-04	1.46E-04	0.00E+00	1.52E-05					
Consumption of Freshwater									
FW [m3]	1.49E+00	1.06E+00	0.00E+00	4.30E-01					
Waste and Output Flows									
HWD [kg]	4.71E-02	4.70E-02	0.00E+00	1.00E-04					
NHWD [kg]	8.05E+01	4.38E+00	0.00E+00	7.61E+01					
HLRW [m3]	1.60E-03	1.60E-03	0.00E+00	5.06E-08					
ILLRW [m3[4.93E-04	4.92E-04	0.00E+00	4.86E-07					
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
EE [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Additional	inventory parameters for tra	nnsparency						
CCE [kg CO2 eq]	8.37E+01	8.37E+01	0.00E+00	0.00E+00					

Table 6: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the PCI Mountain

Section Color Co	7 2 1 0 1 0 0 2							
ODP [kg CFC 11 eq] 2.54E-05 2.47E-05 2.93E-09 7.36E-0 EP [kg N eq] 3.61E-01 2.37E-01 4.85E-02 7.52E-0 AP [kg SO2 eq] 1.76E+00 5.66E-01 8.11E-01 3.84E-0 POCP [kg O3 eq] 3.10E+01 8.22E+00 2.05E+01 2.33E+0 Use of Primary Resources RPRE [MJ] 1.20E+02 9.19E+01 0.00E+00 2.82E+0 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+0 NRPRE [MJ] 3.40E+03 1.38E+03 1.06E+03 9.73E+0	7 2 1 0 1 0 2							
EP [kg N eq] 3.61E-01 2.37E-01 4.85E-02 7.52E-02 AP [kg SO2 eq] 1.76E+00 5.66E-01 8.11E-01 3.84E-0 POCP [kg O3 eq] 3.10E+01 8.22E+00 2.05E+01 2.33E+0 Use of Primary Resources RPRE [MJ] 1.20E+02 9.19E+01 0.00E+00 2.82E+0 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 3.40E+03 1.38E+03 1.06E+03 9.73E+0	2 1 0 1 0 2							
AP [kg SO2 eq] 1.76E+00 5.66E-01 8.11E-01 3.84E-0 POCP [kg O3 eq] 3.10E+01 8.22E+00 2.05E+01 2.33E+0 Use of Primary Resources RPRE [MJ] 1.20E+02 9.19E+01 0.00E+00 2.82E+0 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+0 NRPRE [MJ] 3.40E+03 1.38E+03 1.06E+03 9.73E+0	1 0 1 0 2							
POCP [kg O3 eq] 3.10E+01 8.22E+00 2.05E+01 2.33E+0 Use of Primary Resources RPRE [MJ] 1.20E+02 9.19E+01 0.00E+00 2.82E+0 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+0 NRPRE [MJ] 3.40E+03 1.38E+03 1.06E+03 9.73E+0	0 1 0 2							
Use of Primary Resources	1 0 2							
RPRE [MJ] 1.20E+02 9.19E+01 0.00E+00 2.82E+0 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+0 NRPRE [MJ] 3.40E+03 1.38E+03 1.06E+03 9.73E+0	0							
RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+0 NRPRE [MJ] 3.40E+03 1.38E+03 1.06E+03 9.73E+0	0							
NRPRE [MJ] 3.40E+03 1.38E+03 1.06E+03 9.73E+0	2							
NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
Use of Secondary Resources								
SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
NRSF [MJ] 8.67E+01 8.67E+01 0.00E+00 0.00E+0	0							
RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
Abiotic Depletion Potential								
ADPF [MJ] 2.87E+03 1.01E+03 9.96E+02 8.69E+0	2							
ADPE [kg Sb eq] 1.73E-04 1.62E-04 0.00E+00 1.09E-0	5							
Consumption of Freshwater								
FW [m3] 1.22E+00 1.08E+00 0.00E+00 1.43E-0	1							
Waste and Output Flows								
HWD [kg] 4.78E-02 4.78E-02 0.00E+00 0.00E+0	0							
NHWD [kg] 1.88E+01 3.29E+00 0.00E+00 1.55E+0	1							
HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 1.09E-04	8							
ILLRW [m3[5.02E-04 5.02E-04 0.00E+00 1.07E-0	7							
CRU [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
MR [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
MER [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
EE [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+0	0							
Additional inventory parameters for transparency								
CCE [kg CO2 eq] 7.96E+01 7.96E+01 0.00E+00 0.00E+0								

Table 7: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the PCI West

Second S
ODP [kg CFC 11 eq] 2.59E-05 2.46E-05 5.43E-10 1.28E-06 EP [kg N eq] 3.59E-01 2.42E-01 9.08E-03 1.07E-01 AP [kg SO2 eq] 8.65E-01 6.33E-01 1.52E-01 7.96E-02 POCP [kg O3 eq] 1.33E+01 8.23E+00 3.86E+00 1.21E+00 Use of Primary Resources RPRE [MJ] 1.39E+02 9.62E+01 0.00E+00 4.25E+01 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.96E+03 1.38E+03 1.96E+02 3.84E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00
EP [kg N eq] 3.59E-01 2.42E-01 9.08E-03 1.07E-01 AP [kg SO2 eq] 8.65E-01 6.33E-01 1.52E-01 7.96E-02 POCP [kg O3 eq] 1.33E+01 8.23E+00 3.86E+00 1.21E+00 Use of Primary Resources RPRE [MJ] 1.39E+02 9.62E+01 0.00E+00 4.25E+01 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.96E+03 1.38E+03 1.96E+02 3.84E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.0
AP [kg SO2 eq] 8.65E-01 6.33E-01 1.52E-01 7.96E-02 POCP [kg O3 eq] 1.33E+01 8.23E+00 3.86E+00 1.21E+00 Use of Primary Resources RPRE [MJ] 1.39E+02 9.62E+01 0.00E+00 4.25E+01 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.96E+03 1.38E+03 1.96E+02 3.84E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 0.00E+00 Consumption of Fres
POCP [kg O3 eq] 1.33E+01 8.23E+00 3.86E+00 1.21E+00
NRPRE [MJ] 1.39E+02 9.62E+01 0.00E+00 4.25E+01 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.96E+03 1.38E+03 1.96E+02 3.84E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RE [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 FW [m3] 1.75E+00 1.10E+00 0.00E+00 0.00E+00 6.55E-01 FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01 SCONSETTION SCONSET SCONSE
RPRE [MJ] 1.39E+02 9.62E+01 0.00E+00 4.25E+01 RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.96E+03 1.38E+03 1.96E+02 3.84E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
RPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRPRE [MJ] 1.96E+03 1.38E+03 1.96E+02 3.84E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
NRPRE [MJ] 1.96E+03 1.38E+03 1.96E+02 3.84E+02 NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
NRPRM [MJ] 0.00E+00 0.00E+00 0.00E+00 Use of Secondary Resources SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
SM [kg] 0.00E+00
SM [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
RSF [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
NRSF [MJ] 8.07E+01 8.07E+01 0.00E+00 0.00E+00 RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
RE [MJ] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
Abiotic Depletion Potential ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
ADPF [MJ] 1.54E+03 1.03E+03 1.85E+02 3.27E+02 ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
ADPE [kg Sb eq] 1.97E-04 1.79E-04 0.00E+00 1.79E-05 Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
Consumption of Freshwater FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
FW [m3] 1.75E+00 1.10E+00 0.00E+00 6.55E-01
Waste and Output Flows
HWD [kg] 9.71E-02 4.78E-02 0.00E+00 4.93E-02
NHWD [kg] 1.97E+01 1.78E+00 0.00E+00 1.79E+01
HLRW [m3] 1.60E-03 1.60E-03 0.00E+00 1.71E-08
ILLRW [m3] 5.04E-04 5.04E-04 0.00E+00 1.64E-07
CRU [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MR [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MER [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00
EE [kg] 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Additional inventory parameters for transparency
CCE [kg CO2 eq] 7.41E+01 7.41E+01 0.00E+00 0.00E+00

Table 8: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the PCI Mid Atlantic (PCIMA) & PCI Northeast (PCINE)

Indicator	A1-A3	A1	A2	АЗ					
Environmental Impacts									
GWP [kg CO2 eq]	2.91E+02	1.89E+02	5.87E+01	4.29E+01					
ODP [kg CFC 11 eq]	2.57E-05	2.44E-05	2.48E-09	1.29E-06					
EP [kg N eq]	4.17E-01	2.22E-01	4.12E-02	1.55E-01					
AP [kg SO2 eq]	1.34E+00	4.09E-01	6.89E-01	2.40E-01					
POCP [kg O3 eq]	2.77E+01	7.32E+00	1.74E+01	2.91E+00					
Use of Primary Resources									
RPRE [MJ]	7.71E+01	7.25E+01	0.00E+00	4.52E+00					
RPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRPRE [MJ]	2.79E+03	1.22E+03	8.92E+02	6.86E+02					
NRPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
		Use of Secondary Resources	3						
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
NRSF [MJ]	8.40E+01	8.40E+01	0.00E+00	0.00E+00					
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Abiotic Depletion Potential									
ADPF [MJ]	2.31E+03	9.12E+02	8.42E+02	5.52E+02					
ADPE [kg Sb eq]	1.42E-04	1.29E-04	0.00E+00	1.24E-05					
	Consumption of Freshwater								
FW [m3]	1.20E+00	9.88E-01	0.00E+00	2.16E-01					
Waste and Output Flows									
HWD [kg]	3.74E-02	3.74E-02	0.00E+00	0.00E+00					
NHWD [kg]	2.52E+01	4.19E+00	0.00E+00	2.10E+01					
HLRW [m3]	1.60E-03	1.60E-03	0.00E+00	4.52E-08					
ILLRW [m3[3.89E-04	3.89E-04	0.00E+00	4.20E-07					
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
EE [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Additional	inventory parameters for tra	nsparency						
CCE [kg CO2 eq]	7.71E+01	7.71E+01	0.00E+00	0.00E+00					

Table 9: Cradle to Gate Results for One Metric Tonne Insulated Precast Concrete Produced in the PCMA.

Indicator	A1-A3	A1	A2	А3
	•	Environmental Impacts		
GWP [kg CO2 eq]	2.76E+02	2.09E+02	4.34E+01	2.36E+01
ODP [kg CFC 11 eq]	2.62E-05	2.47E-05	1.82E-09	1.48E-06
EP [kg N eq]	3.73E-01	2.39E-01	3.15E-02	1.02E-01
AP [kg SO2 eq]	1.23E+00	5.59E-01	5.33E-01	1.34E-01
POCP [kg O3 eq]	2.46E+01	8.27E+00	1.37E+01	2.64E+00
		Use of Primary Resources		
RPRE [MJ]	9.91E+01	8.92E+01	0.00E+00	9.97E+00
RPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRPRE [MJ]	2.43E+03	1.39E+03	6.56E+02	3.83E+02
NRPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Use of Secondary Resources	5	
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF [MJ]	8.89E+01	8.89E+01	0.00E+00	0.00E+00
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		Abiotic Depletion Potential		
ADPF [MJ]	1.96E+03	1.01E+03	6.18E+02	3.30E+02
ADPE [kg Sb eq]	1.75E-04	1.61E-04	0.00E+00	1.48E-05
		Consumption of Freshwater		
FW [m3]	2.35E+00	1.08E+00	0.00E+00	1.27E+00
		Waste and Output Flows		
HWD [kg]	4.89E-02	4.89E-02	0.00E+00	0.00E+00
NHWD [kg]	2.29E+01	3.73E+00	0.00E+00	1.91E+01
HLRW [m3]	1.60E-03	1.60E-03	0.00E+00	1.51E-08
ILLRW [m3[5.14E-04	5.14E-04	0.00E+00	1.45E-07
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EE [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Additional	inventory parameters for tra	nsparency	
CCE [kg CO2 eq]	8.16E+01	8.16E+01	0.00E+00	0.00E+00

6.2. SAMPLE MINIMUM AND MAXIMUM

Table 10-11 represent the minimum and maximum values of cradle-to-gate results for all three product categories across the nine regions.

Table 10: Maximum values for Cradle to Gate results for One Metric Tonne Insulated Precast Concrete Produced in the nine different regions.

Indicator	Unit	FPCA	GCPCI/PCI Gulf South	PCI Central	PCI IW	PCI Midwest	PCI Mountain	PCI West	PCIMA/PCINE	РСМА
Environme	ntal Impacts									
GWP	kg CO2 eq.	3.75E+02	3.38E+02	3.17E+02	3.02E+02	3.42E+02	3.76E+02	2.79E+02	3.30E+02	3.19E+02
ODP	kg CFC 11 eq.	2.79E-05	2.73E-05	2.69E-05	2.67E-05	2.73E-05	2.61E-05	2.65E-05	2.64E-05	2.69E-05
EP	kg N eq.	4.26E-01	4.73E-01	4.30E-01	3.77E-01	4.66E-01	3.96E-01	3.92E-01	4.52E-01	4.09E-01
AP	kg SO2 eq.	2.07E+00	1.35E+00	1.14E+00	9.97E-01	1.38E+00	1.88E+00	9.88E-01	1.42E+00	1.34E+00
POCP	kg O3 eq.	3.85E+01	3.07E+01	2.16E+01	1.66E+01	2.46E+01	3.27E+01	1.49E+01	2.92E+01	2.63E+01
ADPF	MJ	2.75E+03	2.21E+03	2.06E+03	1.87E+03	2.42E+03	3.05E+03	1.71E+03	2.47E+03	2.14E+03

Table 11: Minimum values for Cradle to Gate results for One Metric Tonne Insulated Precast Concrete Produced in the nine different regions.

Indicator	Unit	FPCA	GCPCI/PCI Gulf South	PCI Central	PCI IW	PCI Midwest	PCI Mountain	PCI West	PCIMA/PCINE	РСМА
Environme	ntal Impacts									
GWP	kg CO2 eq.	2.80E+02	2.49E+02	2.31E+02	2.16E+02	2.56E+02	2.93E+02	2.00E+02	2.52E+02	2.34E+02
ODP	kg CFC 11 eq.	2.69E-05	2.61E-05	2.58E-05	2.56E-05	2.62E-05	2.51E-05	2.56E-05	2.54E-05	2.58E-05
EP	kg N eq.	3.73E-01	4.13E-01	3.74E-01	3.21E-01	4.11E-01	3.43E-01	3.43E-01	4.01E-01	3.55E-01
AP	kg SO2 eq.	1.80E+00	1.21E+00	1.00E+00	8.50E-01	1.23E+00	1.71E+00	8.16E-01	1.30E+00	1.18E+00
POCP	kg O3 eq.	3.57E+01	2.81E+01	1.92E+01	1.41E+01	2.21E+01	3.03E+01	1.26E+01	2.70E+01	2.39E+01
ADPF	MJ	2.46E+03	1.95E+03	1.79E+03	1.61E+03	2.16E+03	2.79E+03	1.47E+03	2.23E+03	1.88E+03

6.3. INTERPRETATION

Across the production information modules for all regions, module A1 raw material supply contributes the largest share of the impact category results – accounting for roughly 70-80% of the impact burden. The upstream raw material supply (A1) also accounts for the largest share of energy use; almost all of which is drawn from non-renewable energy sources. Raw material transportation (A2) proves to be a minor contributor to the burdens exhibited by precast products. Manufacturing (A3) precast products contributes in the order of 10% of all greenhouse gases and 20% of the primary

energy use. Across the product groups there is a correlation between cement use and the global warming potential and energy use results.

7 ADDITIONAL ENVIRONMENTAL INFORMATION

Quality and Environmental Management Systems

In general, PCI manufacturing facilities follow the ISO 14001 environmental management system, ISO 9001 quality management system or other in-house quality control systems.

8 DECLARATION TYPE AND PRODUCT AVERAGE DECLARATION

The type of EPD is defined as:

A "Cradle-to-gate" EPD of regionalized Insulated precast concrete products covering the product stage (modules A1 to A3) and is intended for use in Business-to-Business communication.

9 DECLARATION COMPARABILITY LIMITATION STATEMENT

The following ISO statement indicates the EPD comparability limitations and intent to avoid any market distortions or misinterpretation of EPDs based on the NSF's Precast Concrete PCR: 2021:

- EPDs from different programs (using different PCR) may not be comparable.
- Declarations based on the NSF Precast Concrete PCR are not comparative assertions; that is, no claim of environmental superiority may be inferred or implied.

10 EPD EXPLANATORY MATERIAL

For any explanatory material, in regard to this EPD, please contact the program operator. ASTM International Environmental Product Declarations 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, http://www.astm.org

11 REFERENCES

- 1. ISO 14044: 2006 Environmental Management Life cycle assessment Requirements and Guidelines.
- 2. ISO 14044: 2006/ Amd 1:2017 Environmental Management Life cycle assessment Requirements and Guidelines Amendment 1.
- 3. ISO 14044: 2006/ Amd 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines Amendment 2.
- 4. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- 5. ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- 6. EPA PCR Guidance Document: U.S. EPA Criteria for Product Category Rules (PCRs) to Support the Label Program for Low Embodied Carbon Construction Materials (EPA's PCR Criteria) (Version 1—2024)
- 7. IPCC AR5: IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp
- 8. CED V1.10 NCV: Cumulative Energy Demand (CED) V1.10
- 9. NSF/ASTM International, Product Category Rules for Precast Concrete, UNCPC: 37550 Version 3 (April 30, 2021)

APPENDIX A – SECONDARY DATASETS

Table A1: Datasets used in the A1 Module of this LCA

Flow	Materials	LCI Data Source	Year / Region	Data Quality Assessment
Ref.	Materials	Loi Data Cource	real / Region	Data Quality Assessment
A1-1	GU and GUL Cement ASTM C150, C595, C1157	Portland Cement Association EPD of Portland Cement and Portland Limestone Cement (2021)	2021 North America	 Technology: very good Time: very good Geography: very good Completeness: very good Reliability: very good
A1-2	Fly Ash ASTM C618	None, no incoming burden, only transport is considered	N/A	N/A Recovered material
A1-3	Silica Fume ASTM c1240	None, no incoming burden, only transport is considered	N/A	N/ARecovered material
A1-4	Slag Cement ASTM C989	Slag Cement Association EPD of North America Slag Cement (2021)	2021 North America	 Technology: very good Time: very good Geography: very good Completeness: very good Reliability: very good
A1-5	Crushed Aggregates coarse and fine ASTM C33	ecoinvent 3.9: "Gravel, crushed {RoW} production Cut-off, U" Modified foreground process with regionspecific electricity grid.	2024 World/ Regional	 Technology: very good Time: poor Geography: good Completeness: very good Reliability: very good
A1-6	Natural Aggregates coarse and fine ASTM C330	ecoinvent 3.9: "Gravel, round {RoW} gravel and sand quarry operation Cut-off, U" Modified foreground process with regionspecific electricity grid.	2024 World/ Regional	 Technology: very good Time: poor Geography: good Completeness: very good Reliability: very good

Flow Ref.	Materials	LCI Data Source	Year / Region	Data Quality Assessment
A1-7	Pelletized Slag	Slag Cement Association EPD of North America Slag Cement, Module A1 (2021)	2021 North America	 Technology: very good Time: very good Geography: very good Completeness: very good Reliability: very good
A1-8	Admixtures ASTM C494	EFCA EPDs for Air Entrainers, Plasticisers and superplasticisers, Hardening Accelerators, Set Accelerators, Water Resisting Admixtures, and Retarders (2015) [8] Non-supported LCIA indicators estimated – adjusted using TRACI equivalents	2022 EU	 Technology: very good Time: very good Geography: fair Completeness: good Reliability: very good
A1-9	Batch and Wash Water ASTM C1602	ecoinvent 3.9: Tap water {RoW} market for Cut-off, U	2024 World/ USA	 Technology: very good Time: good Geography: good Completeness: very good Reliability: very good
A1-10	Steel Plate	American Iron and Steel Institute – Life Cycle Inventories of North American Steel Products (2020) – wire and plate	2017 USA	 Technology: very good Time: very good Geography: good Completeness: very good Reliability: very good
A1-11	Rebar, Welded Wire, Steel Stressing Strand*	Concrete Reinforcing Steel Institute EPD for Steel Reinforcement Bar (2020) – *Adjusted by factor 1.10 for Steel Stressing Strand	2022 North America	 Technology: very good Time: very good Geography: good Completeness: very good Reliability: very good
A1-12	Lightweight Aggregates	Ecoinvent 3.9: Expanded clay {RoW} production Cut-off U	2024 World/ USA	 Technology: very good Time: good Geography: good Completeness: very good Reliability: very good
A1-13	Glass Fiber	Ecoinvent 3.9: Glass fiber , {RoW} market for Cut-off, U	2024 World/ USA	 Technology: very good Time: good Geography: good Completeness: very good Reliability: very good

Flow Ref.	Materials	LCI Data Source	Year / Region	Data Quality Assessment
A1-14	Polystyrene and Waste expanded polystyrene	EPD: EPS Industry Alliance: Expanded Poystyrene (EPS) Insulation Type VIII; Waste expanded polystyrene {GLO} market for APOS, S		 Technology: very good Time: good Geography: good Completeness: very good Reliability: very good

Table A2: Datasets used in the A2 Module of this LCA

Flow Ref.	Process	LCI Data Source	Year / Region	Data Quality Assessment
A2-1	Road	USLCI 2014: Transport, combination Truck, short-haul, diesel powered/tkm/RNA (2014) [13]	2014 USA	 Technology: very good Time: good Geography: very good Completeness: very good Reliability: very good
A2-2	Rail	USLCI 2014: Transport, train, diesel powered /US U (2014) [13]	2014 USA	 Technology: very good Time: fair Geography: very good Completeness: very good Reliability: very good
A2-3	Ocean	USLCI 2014: Transport, Ocean freighter, average fuel mix /US U (2014) [13]	2014 USA	 Technology: very good Time: fair Geography: very good Completeness: very good Reliability: very good
A2-4	Barge	USLCI 2014: Transport, Barge, average fuel mix /US U (2014) [13]	2014 USA	 Technology: very good Time: fair Geography: very good Completeness: very good Reliability: very good

Table A3: Datasets used in the A3 Module of this LCA

Flow Ref	Process	LCI Data Source	Year / Region	Data Quality Assessment
A3-1	Electricity	ecoinvent 3.9: Electricity, low voltage {XX} market for Cut-off, U (2018) [18]	2024 North America	 Technology: very good Time: very good Geography: very good Completeness: very good Reliability: very good

Flow Ref	Process	LCI Data Source	Year / Region	Data Quality Assessment
A3-2	Natural Gas	USLCI 2014: Natural Gas, combusted in industrial boiler /US U (2014)	2014 USA	 Technology: very good Time: fair Geography: very good Completeness: very good Reliability: very good
A3-3	Diesel	USLCI 2014: Diesel, combusted in industrial equipment /US U (2014) [13]	2014 USA	 Technology: very good Time: fair Geography: very good Completeness: very good Reliability: very good
A3-4	Gasoline	USLCI 2014: Gasoline, combusted in equipment /US U (2014) [13]	2014 USA	 Technology: very good Time: fair Geography: very good Completeness: very good Reliability: very good
A3-5	Liquefied Propane Gas	USLCI 2014: Liquefied petroleum gas, combusted in industrial boiler /US U (2014) [13]	2014 USA	 Technology: very good Time: fair Geography: very good Completeness: very good Reliability: very good
A3-6	Hazardous Solid Waste,	ecoinvent 3.9: Hazardous waste, for incineration {RoW} treatment of hazardous waste, hazardous waste incineration Alloc Rec, U (2018) [18]	2024 World/ USA	 Technology: very good Time: good Geography: good Completeness: very good Reliability: very good
A3-7	Non-Hazardous Solid Waste	ecoinvent 3.9: Inert waste {RoW} treatment of, sanitary landfill Alloc Rec, U (2018) [18] Modified foreground process with United States average electricity grid	2024 World/ USA	 Technology: very good Time: good Geography: good Completeness: very good Reliability: very good

APPENDIX B - PARTICIPATING COMPANIES

Company	Facility	PCI Reporting Region
ATAM December	ATMI Indy	PCI Central
ATMI Precast	ATMI Aurora	PCI-IW
Boccella Precast	Boccella NJ	PCIMA/PCINE
Clark Basifia	Adelanto, CA	PCI West
Clark Pacific	Woodland, CA	PCI West
Con-Fab California, LLC	Lathrop, CA	PCI West
Concrete Building Systems	Delaware	PCIMA/PCINE
Concrete Industries, Inc.	Nebraska	PCI Midwest
Concrete Technology Corporation	Washington	PCI West
	Coreslab Structures (Missouri)	PCI Midwest
	Coreslab Structures (ARIZ) Inc.	PCI West
Coreslab Structures Inc.	Coreslab Structures (Indianapolis) Inc.	PCI Central
Coresiab Structures Inc.	Coreslab Structures (OKLA) Inc	PCMA
	CoreSlab Tampa	FPCA
	CoreSlab Perris, CA	PCI West
County Prestress	Illinois	PCI-IW
East Texas Precast	East Texas Precast	PCMA
	EnCon Colorado	PCI Mountain States
EnCon United	Stresscon	PCI Mountain States
	EnCon Arizona	PCI West
	Grandville, MI	PCI Central
	Grove City, OH	PCI Central
Fabcon	Mahanoy City, PA	PCIMA/PCINE
rapcon	Pleasanton, KS	PCI Midwest
	Savage, MN	PCI Midwest
	Selkirk, NY	PCIMA/PCINE

	Trenton, MI	PCI Central
Finfrock	Florida	FPCA
Gage Brothers	Sioux Falls, SD	PCI Midwest
	Ashland City, TN	PCI Central
	Kissimmee, FL	FPCA
Gate Precast	Jacksonville, FL	FPCA
	Hillsboro, TX (Arch and Structural Plants)	PCMA
	Monroeville, AL	GCPCI/PCI Gulf South
High Concrete Group LLC	Denver, PA	PCIMA/PCINE
Joseph P.Cararra & Sons	Vermont	PCIMA/PCINE
V ' C C C C	Harrisburg, OR	PCI West
Knife River Precast	Newman Lake, WA	PCI West
Linda a Danasak	Lindsay North Carolina	GCPCI/PCI Gulf South
Lindsay Precast	Lindsay South Carolina	GCPCI/PCI Gulf South
	Bartow, FL	FPCA
	Greenville, SC	GCPCI/PCI Gulf South
	Hiram, GA	GCPCI/PCI Gulf South
Metromont	Richmond, VA	PCIMA/PCINE
	Spartanburg, SC	GCPCI/PCI Gulf South
	Winchester, VA	PCIMA/PCINE
	Lino Lakes, MN	PCI Midwest
Molin	Ramsey, MN	PCI Midwest
Mid-States Concrete Industries, LLC	Illinois	PCI-IW
Dailey Precast LLC, A Peckham Family Company	Dailey Precast	PCIMA/PCINE
Plum Creek Structures	Plum Creek, CO	PCI Mountain States
Prestress Services	Kentucky	PCI Central
	Spartanburg, SC	GCPCI/PCI Gulf South
Tindall Corporation	Petersburg, VA	PCIMA/PCINE
	Moss Point, MS	GCPCI/PCI Gulf South
United Concrete Products	Connecticut	PCIMA/PCINE
	Crystal Lake, MN	PCI Midwest
	Valders, MN	PCI Midwest
Walla	Albany, MN	PCI Midwest
Wells	Rosemount, MN	PCI Midwest
	Wells, MN	PCI Midwest
	Brighton, CO	PCI Mountain States
Willis Construction	San Juan Bautista, CA	PCI West

