Environmental Product Declaration

Helix Steel

Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

According to EN 15804 ISO 21930 ISO 14025

HELIX° STEEL Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

1. General Information

Manufacturer Name: Helix Steel – 2300 Washtenaw Avenue,

Suite 201, Ann Arbor, MI 48104

ASTM International Program Operator:

> 100 Barr Harbor Drive West Conshohocken, PA

19428-2959, USA

Declaration Number: EPD 637

Reference PCR: ISO 21930: 2017

Date of Issuance: Feb 14, 2024

End of Validity: Feb 14, 2029

Product Name: Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

EPD Owner: Helix Steel

Declared Unit: 1 ton of Helix® 5-25 BAZ, 5-25 Z, 5-25 BA

EPD Scope: Cradle-to-gate (A1, A2, and A3)

Verification: ISO 21930 serves as the core PCR. Independent verification of the

declaration according to ISO 14025 and ISO 21930. internal

LCA Reviewer Timothy S. Brooke and EPD Verifier: **ASTM International** deligs Bealle

2. Product

2.1 Product Description

The declared product is Helix® 5-25 Micro Rebar®. This product is a twisted steel wire that is used for the following applications: structural walls, structural floors, foundations, beams/columns, shotcrete, pacing, precast, and rebar replacement. The wire allows for efficient tensile stress redistribution within concrete prior to the concrete cracking. This contributes to an increase in the concrete's strain capacity and pre-crack properties. The declared functional unit is 1 ton of Helix® 5-25 Micro Rebar®. The dosage of Helix® 5-25 Micro Rebar® per cubic yard or cubic meter of concrete is determined in accordance with either ICC-ES ER 39491 or IAPMO-ES ER 279.2

2.2 Technical Data

Table 1 provides technical data for Helix® 5-25 Micro Rebar®.

Table 1: Technical Data								
Name	Value	Unit						
Length	25	mm						
Diameter	0.50	mm						
Density	25,307	Fibers/kg						
Tensile Strength	246.5	ksi minimum						

2.3 Base Materials

The product is made entirely from High Carbon Steel Wire.

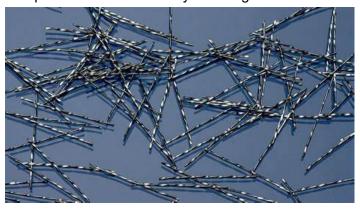


Figure 1. Helix® 5-25 Micro Rebar®.

¹ https://icc-es.org/report-listing/esr-3949/

² https://www.iapmoes.org/media/24427/er 0279.pdf

HELIX®

STEEL Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

3. LCA Calculation Rules

3.1 Declared Unit

The declared unit is 1 ton of Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA produced at Helix Steel's Grand Rapids Manufacturing production facility.

3.2 System Boundary

The system boundary for this study is limited to a cradle-to-gate focus. (see also Table 4):

- A1 Raw material supply: Extraction, handling, and processing of input materials.
- A2 Transportation: Transportation of all input materials from the suppliers to the gate of the manufacturing facility.
- A3 Manufacturing: The preparation processes of Helix Steel's manufacturing facility. This phase also includes the operations of the manufacturing facility and all process emissions that occur at the production facility.

3.3 Estimates and Assumptions

All significant foreground data was gathered from the manufacturer based on measured values.

3.4 Cut-off Criteria

The cut-off criteria for all activity stage flows considered within the system boundary conform with ISO 21930: 2017 Section 7.1.8. Specifically, the cut-off criteria were applied as follows:

- All inputs and outputs for which data are available are included in the calculated effects and no collected core process data are excluded.
- A one percent cut-off is considered for renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process. The sum of the total neglected flows does not exceed 5% of all energy consumption and mass of inputs.
- All flows known to contribute a significant impact or to uncertainty are included.
- The cut-off rules are not applied to hazardous and toxic material flows all of which are included in the life cycle inventory.

No material or energy input or output was knowingly excluded from the system boundary.

3.5 Background Data and 3.6 Data Quality

Data was gathered for the primary material and energy inputs used in production for calendar year 2020. Table 3 describe each LCI data source for raw materials (A1), transportation (A2) and the core manufacture process (A3). Table 3 also includes a data quality assessment for on the basis of the technological, temporal, and geographical representativeness.

Environmental Product Declaration

HELIX® Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

A1: Raw Material Inp	outs			
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment
EAF Steel (used in	Concrete Reinforcing Steel	US	2022	Technology: good
Helix 5-25 BA)	Institute: EPD for Fabricated			Process models average US technology
	Steel Reinforcement			Time: very good
				Data is <5 years old
				Geography: good
				Data is representative of US conditions.
Galvanized EAF Steel	Concrete Reinforcing Steel	US	2022	Technology: good
used in Helix 5-25	Institute: EPD for Fabricated			Process models average US technology
BAZ and Helix 5-25 Z)	Steel Reinforcement, adjusted			Time: very good
	with galvanizing from Steel hot			Data is <5 years old
	dip galvanised - Worldsteel			Geography: good
				Data is representative of US conditions.
A2: Transportation				
Inputs	LCI Data Source	Geography	Year	Data Quality Assessment
Trucking	USLCI: Transport, combination	Global	2014	Technology: very good
	truck, long-haul, diesel			Process models average global technology
	powered/tkm/RNA			Time: good
				Data is <10 years old
				Geography: very good
				Data is representative of global conditions
Rail	USLCI: Transport, train, diesel	Global	2014	Technology: very good
	powered/US			Process models average global technology
				Time: good
				Data is <10 years old
				Geography: very good
				Data is representative of global conditions
Ocean	USLCI: Transport, ocean	Global	2014	Technology: very good
	freighter, average fuel mix/US			Process models average global technology
				Time: good
				Data is <10 years old
				Geography: very good

Environmental Product Declaration

HELIX° Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

Energy	LCI Data Source	Geography	Year	Data Quality Assessment
Electricity	Ecoinvent 3: Electricity, low	Global	2018	Technology: very good
	voltage {RFC} market for			Time: good
	Cut-off, U			Data is <5 years old
				Geography: very good
Propane	USLCI: Liquefied petroleum	Global	2014	Technology: very good
	gas, combusted in industrial			Time: good
	boiler/US			Data is <10 years old
				Geography: very good.
Cardboard Boxes	USLCI: Corrugated board,	Global	2014	Technology: very good
	mixed fibre, single wall, at			Time: good
	plant/RER with US electricity			Data is <10 years old
				Geography: very good.
Shrink Wrap	USLCI: Packaging film, low	Global	2014	Technology: very good
	density polyethylene {GLO}			Time: good
	market for Alloc Def, U			Data is <10 years old
				Geography: very good.
Greases	USLCI: Diesel, at refinery/I/US	Global	2014	Technology: very good
				Time: good
				Data is <10 years old
				Geography: very good.
Non-Hazardous -	USLCI: Process-specific burden,	Global	2014	Technology: very good
Regular Landfill	sanitary landfill {RoW}			Time: good
	processing Alloc Def, U			Data is <10 years old
				Geography: very good.

3.7 Period under Review

Data was gathered for the material and energy inputs used in the production for calendar year 2020. Data for the primary material inputs is representative of 2023 processes.

3.8 Allocation

At Helix Steel several different steel products are produced. Since the primary data for manufacturing was only available on a facility level, the environmental load among the products produced is allocated according to its mass. For waste that is recycled, the 'recycled content approach' was chosen. The recycling of waste generated by the product system is cut off.

HELIX® Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

3.9 Comparability

This LCA was created using industry average data for upstream materials. Data variation can result from differences in supplier locations, manufacturing processes, manufacturing efficiency and fuel types used.

4. LCA Results

Life cycle impact assessment (LCIA) is the phase in which the set of results of the inventory analysis – the inventory flow table – is further processed and interpreted in terms of environmental impacts and resource use inventory metrics. Table 4 and 5 below summmarizes the LCA results for the cradle-to-gate (A1-A3) product system.

Table	Table 4: Description of the System Boundary (x: included in LCA; mnd: module not declared; mnr: module not reported)																	
Product				struction allation		Use						End-o	f-life		th	efits Be ie Syst Sounda	em	
Raw Material supply	Transport	Manufacturing	Transport	Construction / Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-Construction/ Demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling
A1	A2	A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D	D	D
х	Х	Х	mnd	mnd	mnd	mnd	mnr	mnr	mnr	mnd	mnd	mnd	mnd	mnd	mnd	mnd	mnd	mnd

Environmental **P**roduct **D**eclaration

HELIX® Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

Table 5. LCIA Results for 1 ton Helix® 5-25 BAZ and Helix® 5-25 Z Micro Rebar®									
Environmental Indicator	Abbreviation	Units	Total	A1	A2	А3			
Core Mandatory Impact Indicator									
Global warming potential	GWP	kg CO2-eq	1.37E+03	8.80E+02	2.82E+02	2.10E+02			
Depletion potential of the stratospheric	ODP	kg CFC-11-	2.72E-06	1.12E-09	1.19E-08	2.71E-06			
Acidification potential of land and water	AP	kg SO2-eq	6.54E+00	2.24E+00	3.72E+00	5.76E-01			
Eutrophication potential	EP	kg PO4-eq	4.20E-01	1.21E-01	2.16E-01	8.38E-02			
Formation of tropospheric ozone	SFP	Kg O3-eq	1.52E+02	5.06E+01	9.58E+01	5.74E+00			
Abiotic depletion potential for fossil	ADPF	MJ Surplus	1.37E+03	8.80E+02	2.82E+02	2.10E+02			
Fossil Fuel Depletion	FFD	MJ Surplus	8.33E+02	0.00E+00	5.98E+02	2.35E+02			
Use of Primary Resources									
Renewable primary energy carrier used as energy	RPRE	MJ	1.32E+03	1.21E+03	0.00E+00	1.16E+02			
Renewable primary energy carrier used	RPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Non-renewable primary energy used as	NRPRE	MJ	2.00E+04	1.12E+04	4.29E+03	4.43E+03			
Non-renewable primary energy used as	NRPRM	MJ	3.13E+02	3.13E+02	0.00E+00	0.00E+00			
Secondary Material, Secondary Fuel and	Recovered Energ	iy .							
Use of secondary materials	SM	kg	1.73E+03	1.73E+03	0.00E+00	0.00E+00			
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Recovered energy	RE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Mandatory Inventory Parameters									
Use of freshwater resources	FW	m3	2.26E+02	8.67E+00	0.00E+00	2.17E+02			
Indicators Describing Waste									
Disposed of hazardous waste	HWD	kg	1.35E+00	1.35E+00	0.00E+00	0.00E+00			
Disposed of non-hazardous waste	NHWD	kg	5.74E+00	5.74E+00	0.00E+00	0.00E+00			
Disposed of high-level radioactive waste	HLRW	m3	5.40E-04	5.39E-04	0.00E+00	9.24E-07			
Disposed of low-level radioactive waste	LLRW	m3	1.48E-02	1.48E-02	0.00E+00	8.25E-06			
Components for reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Materials for recycling	MFR	kg	3.62E+01	3.62E+01	0.00E+00	0.00E+00			
Materials for energy recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Recovered energy exported from the product system	EE	MJ, NCV	0.00E+00	0.00E+00	0.00E+00	0.00E+00			

Environmental **P**roduct **D**eclaration

HELIX® Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

Table 6. LCIA Results for 1 ton Helix® 5-25 BA Micro Rebar®										
Environmental Indicator	Abbreviation	Units	Total	A1	A2	А3				
Core Mandatory Impact Indicator										
Global warming potential	GWP	kg CO2-eq	1.33E+03	8.33E+02	2.82E+02	2.10E+02				
Depletion potential of the stratospheric	ODP	kg CFC-11-	2.72E-06	1.06E-09	1.19E-08	2.71E-06				
Acidification potential of land and water	AP	kg SO2-eq	6.42E+00	2.12E+00	3.72E+00	5.76E-01				
Eutrophication potential	EP	kg PO4-eq	4.14E-01	1.14E-01	2.16E-01	8.38E-02				
Formation of tropospheric ozone	SFP	Kg O3-eq	1.49E+02	4.79E+01	9.58E+01	5.74E+00				
Abiotic depletion potential for fossil	ADPF	MJ Surplus	7.49E+03	9.95E+02	4.04E+03	2.45E+03				
Fossil Fuel Depletion	FFD	MJ Surplus	8.33E+02	0.00E+00	5.98E+02	2.35E+02				
Use of Primary Resources										
Renewable primary energy carrier used as energy	RPRE	MJ	1.26E+03	1.14E+03	0.00E+00	1.16E+02				
Renewable primary energy carrier used	RPRM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Non-renewable primary energy used as	NRPRE	MJ	1.94E+04	1.06E+04	4.29E+03	4.43E+03				
Non-renewable primary energy used as	NRPRM	MJ	2.97E+02	2.97E+02	0.00E+00	0.00E+00				
Secondary Material, Secondary Fuel and	Recovered Energ	ıy								
Use of secondary materials	SM	kg	1.64E+03	1.64E+03	0.00E+00	0.00E+00				
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Recovered energy	RE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Mandatory Inventory Parameters										
Use of freshwater resources	FW	m3	2.26E+02	8.21E+00	0.00E+00	2.17E+02				
Indicators Describing Waste										
Disposed of hazardous waste	HWD	kg	1.28E+00	1.28E+00	0.00E+00	0.00E+00				
Disposed of non-hazardous waste	NHWD	kg	5.43E+00	5.43E+00	0.00E+00	0.00E+00				
Disposed of high-level radioactive waste	HLRW	m3	5.11E-04	5.10E-04	0.00E+00	9.24E-07				
Disposed of low-level radioactive waste	LLRW	m3	1.41E-02	1.40E-02	0.00E+00	8.25E-06				
Components for reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Materials for recycling	MFR	kg	3.42E+01	3.42E+01	0.00E+00	0.00E+00				
Materials for energy recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Recovered energy exported from the product system	EE	MJ, NCV	0.00E+00	0.00E+00	0.00E+00	0.00E+00				

Figure 2 shows the relative contribution to the cumulative impacts of the A1 through A3 phases of the cradle-to-gate life cycle. For GWP the biggest contribution comes from the A1 phase. Therefore, raw materials account for the majority of this impact category. A2 – Transportation is also driving a large amount of the impacts for GWP as well as across other indicators (AP, EP, SFP, and ADPF).

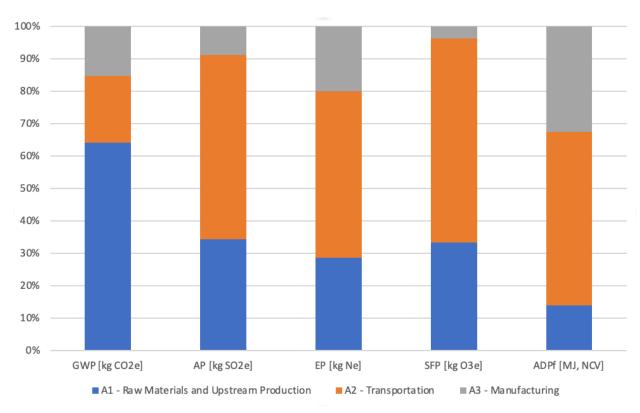


Figure 2. Contribution analysis for Helix® 5-25 BAZ and Helix® 5-25 Z Micro Rebar®.

Environmental Product Declaration

HELIX® STEEL Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

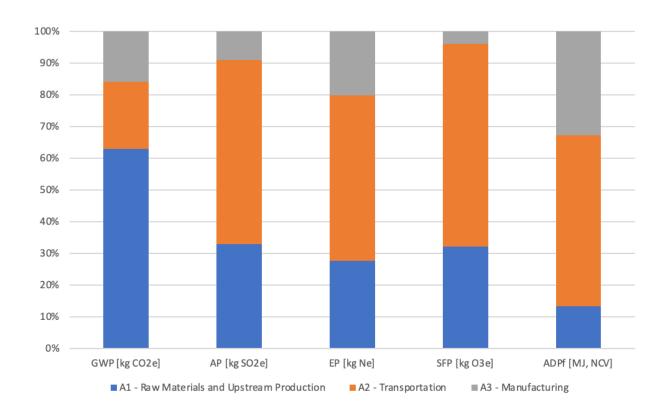


Figure 3. Contribution analysis for Helix® 5-25 BA Micro Rebar®.

Environmental
Product
Declaration

Helix® 5-25 BAZ, Helix® 5-25 Z, and Helix® 5-25 BA

6. References

- ASTM 2020 ASTM Program Operator for Product Category Rules (PCR) and Environmental Product Declarations (EPDs) General Program Instructions v8, April 29th.
- 2. WAP Sustainability: 2023 A Cradle-to-Gate Life Cycle Assessment of Helix® 5-25 Micro Rebar® BAZ and Helix® 5-25 Micro Rebar® Z Manufactured by Helix Steel.
- 3. ISO 21930: 2017 Building construction Sustainability in building construction Environmental declaration of building products.
- 4. ISO 14025: 2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- 5. ISO 14044:2006/AMD 1:2017/ AMD 2:2020 Environmental management Life cycle assessment Requirements and guidelines.
- 6. 14040:2006/AMD 1:2020 Environmental management Life cycle assessment Principles and framework.

