

Building with conscience.

EPD program operator	ASTM International 100 Barr Harbor Drive P.O. Box C700 West Conshohocken, PA 19428-2959, USA https://www.astm.org/			
Manufacturer name	Sto Corp. 3800 Camp Creek Parkway SW, Building 1400, Suite 120 Atlanta, GA 30331 www.stocorp.com (800) 221-2397			
Site(s) in which the results of the LCA are representative	Lauingen, Germany			
Declaration Number	EPD 1087			
Declared Product & Declared Unit	StoCarrier Board Aero One square meter (m²) of manufactured product			
PCR Identification	UL Part A: Life cycle Assessment Calculation Rules and Reporting Requirements v4.0 UL Part B: Cladding Product Systems EPD Requirements, UL 10010-25, v2.0			
Product's intended application and use	For protection of facades and interior walls/ceilings			
Markets of applicability	North America			
Date of certification	December 9, 2025			
Period of validity	5 years from date of certification			
EPD type	Product-specific			
EPD scope	Cradle to gate with options (A1-A3, C1-C4)			
Year of reported primary data	Calendar year 2023			
LCA software and version Number	LCA for Experts (formerly GaBi) 10.9			
LCI database and version Number	MLC (formerly GaBi) Database Version 2024.2			
LCIA methodology and version number	IPCC AR5, TRACI 2.1 and CML-2016			
	Jim Mellentine			
The sub-category PCR review was conducted by	Christopher White, Ph.D			
This declaration was independently verified in accordance with ISO 21930:2017, ISO 14025: 2006 and reference PCRs: Internal External	Philip S. Moser, P.E. (MA) Timothy S Brooke ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428			

Limitations

PCRs by:

Environmental product declarations from different EPD programs (ISO 14025) may not be comparable.

This life cycle assessment was independently verified in

accordance with ISO 21930:2017, ISO 14044 and reference

Comparison of the environmental performance of Cladding Product Systems using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase.

Full conformance with the PCR for Cladding Product allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all

tbrooke@astm.org Thomas P. Gloria, Ph. D.

35 Bracebridge Rd. Newton, MA 02459-1728

Industrial Ecology Consultants

t.gloria@industrial-ecology.com

Full conformance with the PCR for Cladding Product allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same sub-category Part B PCR, and use equivalent scenarios with respect to construction works. However, variations and deviations are possible. Example of variations: Different LCA software and background LCI datasets may lead to different results for upstream or downstream of the life cycle stages declared.

Company

We believe in 'Building with conscience'.

That means ensuring that all building products are not only safe, effective and easy to install, but also environmentally responsible and sustainable. We know you're always looking for the smartest and newest technology to create energy efficient buildings with superior aesthetics.

That's exactly what our products help you achieve. Products like our wall systems, coatings and finishes are consistent favorites among design professionals, contractors and property owners alike. Whatever your needs or vision may be, we offer products for every type of building project; whether it's new construction, restoration or panelization, commercial or residential work.

An architect or specifier focuses on aesthetics and feasibility, a contractor needs products that are easy to work with, and a building owner requires high value and low costs on properties. Sto understands these unique needs, and delivers the smart, innovative materials and solutions that make this all possible. That's why Sto remains the innovative leader in integrated exterior wall systems.

When you combine that commitment to product support and innovation with value-added offerings like consultative design and color services through Sto Studio or training in proper application techniques through the Sto Institute, you get an integrated exterior wall system solution unmatched in the industry.

Manufacturing Site Covered in this EPD

Lauingen, Germany

Product Identification

The product is offered in three sizes: 12mm x 1219mm x2438mm, 12mm x 1200mm x 2400mm, and 12 mm x 800mm x 1200 mm. The study considers the first size option. This consideration does not impact the result as the material/energy input and waste output is allocated and accounted off on the mass basis.

The product declared in this EPD is product number 07002.

Product Description

Sto Carrier Board Aero is a lightweight composite board made of recycled glass granulate for use in the StoVentec Render Rainscreen® wall system for facades. It can also be used on interiors with Sto finish systems or over steel or wood frame ceilings and soffits.

This product falls under CSI division 07 42 00 and UNSPSC code 30161505.

Performance Features

Lightweight	Strong and Flexible	Easy to cut and store
Dimensional Stability	Class A Building Material	_

Technical Details

Table 1: Technical Data for Product

Performance	Test Method	Result	Unit
Tensile Strength	n/a	Not tested	MPa
Flexural Strength	EN ISO 178	≥5.4	MPa
Modulus of Elasticity	EN ISO 178	1,800-2,000	MPa
Water Vapor Permeance	n/a	Not tested	metric perms
Liquid Water Absorption	n/a	Not tested	% of dry weight
Airborne Sound Reduction	n/a	Not tested	dB
Sound Absorption Coefficient	n/a	Not tested	%

Because this product can serve several functions and is an individual component intended for use in Sto's wall systems, not all technical properties specified by the PCR for individual components apply. The technical properties and product performance criteria depend on the combination of products in the wall system. As such, the following table declares the product performance when used in Sto wall systems.

Table 2: Technical Data for Product as a Component of Sto Wall Systems

Meets Requirements of	Evaluation Criteria:	Evaluation Report Reference
2021, 2024 IBC, IRC	ASTM C297, C482, E330, E331, E84, E2485, D2247, B117, E2486, E2568, NFPA 285, 268	CCRR-0454

Material Composition

The material compositions of the product are listed below:

Table 3: Material composition for Product

Ingredient*	Mass %
Expanded glass granulate	<85%
Filler Material	<20%
Reactive Polymer Resin	<10%
Hardener	<2%
Glass Fibre Mesh	<5%
Additives	~1%
* The product does not contain hazardous substanc	es per the EPA's Resource Conservation and Recovery Act.

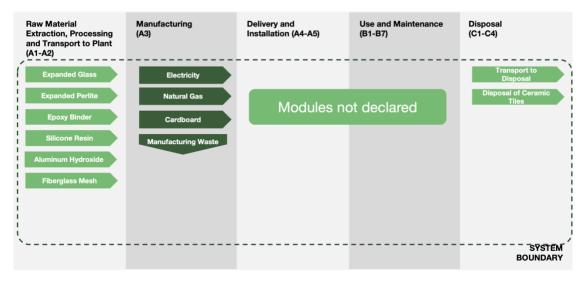
Properties of Declared Product as Delivered

Table 4: Properties of declared product

Parameter	Value
	12mm x 1219mm x2438mm
Sizes	12mm x 1200mm x 2400mm
	12 mm x 800mm x 1200 mm
Packaging	Staked on pallets, 80 sheets per pallet
Storage	Store on pallets off the ground in a dry location
Product Bulletin and Product Test Results ca	n be found at Sto's <u>website</u>

Components related to Life Cycle Assessment

The declared unit for the LCA study was 1 square meter (m²) of manufactured product. The reference flow required for one declared unit is provided in Table 5.


Table 5: Declared Unit Details

10010 01 = 00101		
Parameter	Value	Unit
Declared unit	1 m ² of manufact produc	•
Mass	6.00	kg
Thickness to achieve declared unit	12	mm
Density	500	kg/m³
Length	2.44	m
Width	1.22	m

Scope and Boundaries of the Life Cycle Assessment

The LCA was performed in accordance with ISO 14040 standards. The study is a cradle-to-gate with options LCA and includes the stages A1-A3, C1-C4 as prescribed in the referenced PCRs.

Cut-off Criteria

Material inputs greater than 1% (based on total mass of the final product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the functional unit. No known flows are deliberately excluded from this EPD.

Data Quality

The overall data quality level was determined to be good. Primary data was collected from Sto's facility in Lauingen, Germany for the 2023 reference year. When primary data did not exist, secondary data were obtained from the MLC Database Service. Overall, both primary and secondary data are considered good quality in terms of geographic, temporal and technological coverage.

Estimates and Assumption

Assumptions were made to represent the cradle-to-grave environmental performance of Sto's products. These assumptions were made in accordance with the referenced PCRs and include the transportation distances, the disposal of packaging material and the product at its end of life and use phase assumptions.

Allocation

General principles of allocation were based on ISO 14040/44. Where possible, allocation was avoided. When allocation was necessary it was done on a physical mass basis.

Product Stage (A1-A3)

The product is produced at Sto's Lauingen Germany facility. This stage includes an aggregation of raw material extraction, supplier processing, delivery, manufacturing and packaging by Sto. The product is supplied staked on pallets, 80 sheets per pallet.

End-of-Life Stage (C1-C4)

In this stage, the disposal of product waste at its end of life is included. Excavators, cranes, and other heavy machinery may be used for demolishing large sections of cladding or walls. In the study, it is assumed the products are manually demolished. The disposal pathway waste stream is modeled per the referenced PCRs.

Table 6: End-of-life Scenario Details

Parameter	Value
Collected as mixed construction waste [kg]	6.00
Waste to Landfill [kg]	6.00
Distance to Landfill [km]	32

Life Cycle Assessment Results

As prescribed by the referenced PCRs, TRACI 2.1 impact characterization methodology and IPCC 5th assessment report are adopted to calculate the environment impacts. Table 7 provides the acronym key of the impact indicators declared in this EPD.

Table 7: LCIA Impact Category and LCI Indicator Key

	Table 7: LCIA Impact Category and LCI Indicator Key	
Abbreviation	Parameter	Unit
	IPCC AR5	
GWPexcl	Global warming potential (100 years, excludes biogenic CO ₂)	kg CO₂ eq
GWPincl	Global warming potential (100 years, includes biogenic CO ₂)	kg CO₂ eq
	TRACI 2.1	<u> </u>
AP	Acidification potential of soil and water	kg SO₂ eq
EP	Eutrophication potential	kg N eq
ODP	Depletion of stratospheric ozone layer	kg CFC 11 eq
SFP	Smog formation potential	kg O₃ eq
	CML 2001-Jan 2016	Ŭ .
ADP_F	Abiotic depletion potential for fossil resources	MJ, net calorific value
	Carbon Emissions and Uptake	
BCRP	Biogenic Carbon Removal from Product	kg CO₂
BCEP	Biogenic Carbon Emission from Product	kg CO₂
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂
BCEK	Biogenic Carbon Emission from Packaging	kg CO₂
	Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production	
BCEW	Processes	kg CO ₂
CCE	Calcination Carbon Emissions	kg CO₂
CCR	Carbonation Carbon Removals	kg CO₂
CWNR	Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in Production Processes	kg CO ₂
	Resource Use Parameters	
	Use of renewable primary energy excluding renewable primary energy resources used as raw	
RPR _E	materials	MJ, net calorific value (LHV)
RPR_M	Use of renewable primary energy resources used as raw materials	MJ, net calorific value
$NRPR_{E}$	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ, net calorific value
$NRPR_M$	Use of non-renewable primary energy resources used as raw materials	MJ, net calorific value
SM	Use of secondary materials	kg
RSF	Use of renewable secondary fuels	MJ, net calorific value
NRSF	Use of non-renewable secondary fuels	MJ, net calorific value
RE	Recovered energy	MJ, net calorific value
FW	Net use of fresh water	m^3
	Waste Parameters	
HWD	Disposed-of-hazardous waste	kg
NHWD	Disposed-of non-hazardous waste	kg
HLRW	High-level radioactive waste, conditioned, to final repository	kg
ILLRW	Intermediate- and low-level radioactive waste, conditioned, to final repository	kg
CRU	Components for reuse	kg
MR	Materials for recycling	kg
MER	Materials for energy recovery	kg
EEE	Exported electrical energy	MJ
EET	Exported thermal energy	MJ

>>

StoCarrier Board Aero

The LCIA results presented below are per declared unit: 1 m^2 of manufactured product.

ne zen (results presented selow					
Impact Category	A1-A3	C1	C2	C3	C4
		IPCC AR5			
GWPexcl [kg CO ₂ eq]	6.57E+00	0.00E+00	5.05E-04	0.00E+00	1.33E-01
GWPincl [kg CO ₂ eq]	6.31E+00	0.00E+00	5.03E-04	0.00E+00	1.33E-01
	TRACI L	CIA Impacts (North	n America)		
AP [kg SO ₂ eq]	1.31E-02	0.00E+00	1.41E-06	0.00E+00	6.73E-04
EP [kg N eq]	2.31E-03	0.00E+00	1.48E-07	0.00E+00	2.90E-05
ODP [kg CFC 11 eq]	9.03E-13	0.00E+00	1.47E-18	0.00E+00	6.22E-15
SFP [kg O₃ eq]	2.11E-01	0.00E+00	3.20E-05	0.00E+00	1.20E-02
		CML 2001-Jan 203	16		
ADP _F [MJ]	1.05E+02	0.00E+00	6.53E-03	0.00E+00	1.91E+00
	Carb	on Emissions and	Uptake		
BCRP [kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEP [kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCRK [kg CO ₂]	2.84E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK [kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW [kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCE [kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCR [kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CWNR [kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

The LCI results presented below are per declared unit: $1\ m^2$ of manufactured product.

Impact Category	A1-A3				
	7.2 7.0	C1	C2	C3	C4
	R	esource Use Indica	tors		
RPR _E [MJ]	2.65E+01	0.00E+00	2.91E-04	0.00E+00	2.44E-01
RPR _M [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRPR _E [MJ]	1.11E+02	0.00E+00	6.59E-03	0.00E+00	1.97E+00
NRPR _M [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SM [kg]	4.32E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW [m³]	2.11E-02	0.00E+00	9.69E-07	0.00E+00	2.54E-04
Output Flows and Waste Categories					
HWD [kg]	5.47E-08	0.00E+00	8.88E-13	0.00E+00	4.86E-10
NHWD [kg]	1.68E-01	0.00E+00	6.57E-07	0.00E+00	6.01E+00
HLRW [kg]	2.14E-06	0.00E+00	2.35E-11	0.00E+00	2.34E-08
ILLRW [kg]	2.05E-03	0.00E+00	1.98E-08	0.00E+00	2.09E-05
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR [kg]	0.00E+00	0.00E+00	0.00E+00	1.51E-01	0.00E+00
MER [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		0.005 - 00	0.00E+00	0.00E+00	0.00E+00
EEE [MJ]	0.00E+00	0.00E+00	0.000	0.001	0.00L+00

》

Interpretation

For the product in study, the majority of the environmental impacts come from the Product Stage (A1-A3) which includes the impacts derived from the raw materials, raw material transportation, and manufacturing of the product. For GWP, the main drivers are the polymeric ingredient, the mineral fillers, and fiberglass.

Reference

- ASTM, General Program Instructions, v8.0, April 29, 2020.
- IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
- ISO. (2006). ISO 14025: Environmental labels and declarations Type III environmental declarations Principles and procedures. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14040/Amd 1:2020: Environmental management Life cycle assessment Principles and framework. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14044/Amd 1:2017/Amd 2:2020: Environmental Management Life cycle assessment Requirements and Guidelines. Geneva: International Organization for Standardization.
- ISO. (2017). ISO 21930: Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services. Geneva: International Organization for Standardization.
- UL Environment. (2021). Product Category Rules for Building-Related Products and Services Part B: Cladding Product Systems EPD Requirements, UL 10010–25. UL Environment.
- UL Environment. (2022). Part A: Life Cycle Assessment Calculation Rules and Report Requirements, UL 10010, V4.0.
- US EPA. (2012). TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Version 2.1 User Guide. Retrieved from https://nepis.epa.gov/Adobe/PDF/P100HN53.pdf
- WAP Sustainability (August 2025). Life Cycle Assessment report for Sto Corp StoVentec Rainscreen System Components.

