

GENERAL INFORMATION

This cradle-to-gate with options Environmental Product Declaration covers an EPDM Single Ply Roofing Membrane product produced at the Prescott Plant. The Life Cycle Assessment (LCA) was prepared in conformity with ISO 21930, ISO 14025, ISO 14040, and ISO 14044 and Sub-category PCR: Product Category Rules for Single Ply Roofing Membranes (ASTM International, 2019). This EPD is intended for business-to-business (B-to-B) audiences.

Amrize Building Envelope LLC

26 Century Boulevard, Suite 205 Nashville, Tennessee 37214

Prescott Plant

1406 US Highway 371 N. Prescott, Arkansas 71857

Program Operator

ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 610-832-9500 www.astm.org

EPD# 900

February 21, 2025 Valid for 5 years

LCA/EPD Developer

climate earth.

Climate Earth, Inc. 137 Park Place, Suite 204 Pt Richmond, CA 94801 415-391-2725 www.climateearth.com

ISO 21930:2017 Sustainability in Building Construction-Environmental Declaration of Building Products: serves as the core PCR Product Category Rules for Single Ply Roofing Membranes (ASTM International, 2019) serves as the sub-category PCR.

- Sub-category PCR review was conducted by Thomas P. Gloria, PhD. (<u>t.gloria@industrial-ecology.com</u>) Industrial Ecology Consultants
- Independent verification of the declaration, according to ISO 21930:2017 and ISO 14025:2006.: □ internal ✓ external
- Third party verifier Thomas P. Gloria, PhD. (t.gloria@industrial-ecology.com) Industrial Ecology Consultants
- For additional explanatory material Manufacturer Representative: Sherrie MacWilliams (sherrie.macwilliams@amrize.com)
- This LCA EPD was prepared by: Melissa Diaz, Senior LCA and EPD Project Manager Climate Earth (www.climateearth.com)

PRODUCER

Amrize Building Envelope LLC delivers high-performance solutions that make the entire building envelope more sustainable for customers around the world. We are committed to raising the standards of building solutions by delivering superior quality and innovation while addressing industry needs.

Our offerings cover a comprehensive range of residential and commercial roofing, wall and lining systems, insulation, and waterproofing solutions for a variety of industries from construction to marine and aerospace. Our powerful portfolio brands include Elevate, Duro-Last, Malarkey Roofing Products, GenFlex, Gaco, and Enverge. Visit amrize.com to learn more.

Amrize's Prescott, AR facility is ISO 9000 certified, and manufactures Elevate ethylene propylene diene monomer (EPDM) membrane for use in commercial roofing systems. The facility is 556,000 square feet and opened in 1982.

PRODUCT: RubberGard™ EPDM Membrane

With superior durability, flexibility and UV resistance, RubberGard™ EPDM is a versatile roofing solution that withstands the test of time. RubberGard™ EPDM is a non-reinforced roofing membrane that can be mechanically attached, fully adhered or ballasted and has a proven service life of up to 40 years. RubberGard™ EPDM shifts with and absorbs building movement, leading to a more resilient system. EPDM membranes manufactured at the Prescott facility do not contain hazardous materials.

FIGURE 1

RubberGard™ EPDM

The products covered in this EPD meet the following physical properties:

TABLE 1 Typical Properties (Meets or exceeds ASTM D 4637, Type I)

PHYSICAL TEST	ASTM MIN. VALUE	TYP. VALUE 45 MIL	TYP. VALUE 60 MIL
Thickness (D412)	45 mil: 1.143 mm +0.178 mm/-0.127 mm (0.045" +0.007"/-0.005") 60 mil: 1.52 mm +0.229 mm/-0.152 mm (0.060" +0.009"/-0.006")	1.092 mm (0.043")	1.37 mm (0.054")
Tensile Strength (D412, Die C)	9.0 MPa (1305 psi) Minimum	9.03 MPa (1309 psi)	9.09 MPa (1319 psi)
Dynamic Puncture Resistance @ 5J (D5635)	Pass	Pass	Pass
Static Puncture Resistance @ 20 kg (D5602)	Pass	Pass	Pass
Elongation, Ultimate % (D412, Die C)	300% Minimum	445%	480%
Tensile set (D412, Method A, Die C)	10% Maximum	0%	Pass
Tear Resistance (D624, Die C)	26.27 kN/m (150 lbf/in) Minimum	29.60 kN/m (169 lbf/in)	29.25 kN/m (167 lbf/in)
Brittleness point (D2137)	-45 °C (-49 °F) Maximum	-45 °C (-49 °F)	Pass
Ozone resistance, no cracks D1149)	Pass	Pass	Pass
Tensile Strength after Heat Aging*	8.3 MPa (1205 psi) Minimum	9.48 MPa (1365 psi)	Pass
Elongation, Ultimate after Heat Aging*	200% Minimum	306%	Pass
Tear Resistance after Heat Aging*	21.9 kN/m 125 lbf/in Minimum	33.1 kN/m (189 lbf/in)	Pass
Linear Dimensional Change after Heat Aging*	± 1%	-1%	Pass
Water Absorption by Mass (D471)	+8%/-2%	+1%	Pass
Visual Inspection after Xenon-Arc Weather Resistance Exposure**	Pass	Pass	Pass
PRFSE, Minimum % after Xenon-Arc Weather Resistance Exposure**	30% Minimum	75%	Pass
Elongation, Ultimate, Minimum % after Xenon-Arc Weather Resistance**	200% Minimum	340%	Pass

^{*} Heat age EPDM membrane for: 166 ± 1.66 hours at 240 ± 4 °F (116 ± 2 °C), followed by specific physical testing. ** Weather Resistance shall be Practices G151 and G155 Xenon-Arc as follows:

- Filter Type: Daylight
- Irradiance: 0.35 to 0.70 W/(m2·nm) @ 340 nm [42 to 84 W/(m2·nm) @ 300 to 400 nm]
- Cycle: 690 minutes ± 15 minutes light, 30 minutes light plus water spray
- Un-insulated Black Panel Temp: 176° ± 4°F (80° ± 2°C)
- Relative Humidity: 50% ± 5%
- Spray Water: De-ionized
- Specimen Rotation: Every 315 KJ/(m2·nm) @ 340 nm [37.8 MJ/(m2·nm) @ 300 to 400 nm] Exposure: 10,080 KJ/(m2·nm) @ 340 nm [1209.6 MJ/(m2·nm) @ 300 to 400 nm]

TABLE 2 **Product Components**

MATERIAL	% WEIGHTED AVERAGE COMPOSITION
EPDM Polymer	20.0 - 35.0
Process Oil & Other Aids	10.0 - 35.0
Carbon Black	0.0 - 35.0
Inorganic Filler	10.0 - 50.0
Cure Package & Other Additives	1.0 - 10.0
Polyester Scrim	0.0 - 5.0

LIFE CYCLE ASSESSMENT

DECLARED UNIT

The declared unit is 1 m² of single-ply roofing membrane for a stated product thickness.

SYSTEM BOUNDARY

This EPD is a cradle-to-gate with options EPD, covering the life cycle stages indicated in Table 3. Modules C1 and C3 do not contribute to the end-of-life scenarios considered, so they are declared as zero.

TABLE 3
Life Cycle Product Stages

	DUCTION S			RUCTION AGE		USE STAGE				END-OF-LIFE STAGE					
Extraction and upstream production	Transport to factory	Manufacturing	Transport to site	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction / Demolition	Transport to waste processing or disposal	Waste processing	Disposal of waste
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4
X	X	X	X	X	MND	MND	MND	MND	MND	MND	MND	Χ	X	Χ	X

NOTE: MND = module not declared; X = module included.

CUT-OFF

Items excluded from system boundary include:

- production, manufacture and construction of manufacturing capital goods and infrastructure;
- production and manufacture of production equipment, delivery vehicles, and laboratory equipment;
- personnel-related activities (travel, furniture, and office supplies); and
- energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

COMPARISON

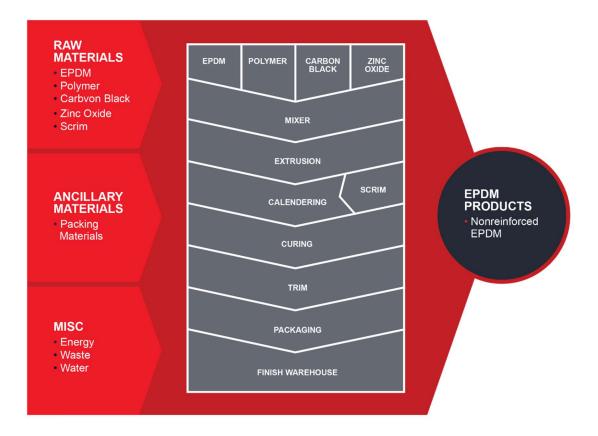
Only EPDs prepared from cradle-to-grave life-cycle results, and based on the same function, quantified by the same functional unit, and taking account of replacement based on the product reference service life (RSL) relative to an assumed building service life, can be used to assist purchasers and users in making informed comparisons between products. As this EPD is prepared from cradle-to-gate with options, this document shall not be used for comparison between products per Section 5.5 of the PCR (ASTM International, NSF International, 2024).

ALLOCATION PROCEDURE

Allocation follows the requirements and guidance of ISO 14044:2006, Clause 4.3.4; and ISO 21930:2017 section 7.2. Recycling and recycled content is modeled using the cut-off rule.

MANUFACTURING

A1-A3, Production Stage


EPDM Membrane Roof Membrane Manufacturing

The main material input into the manufacturing process is EPDM along with various additives, which aid in the manufacturing process (e.g., accelerators) and which enhance the membrane's performance (e.g., fire retardants and pigments). The manufacturing process begins with mixing raw materials together in large batches to create uncured rubber that is slabbed off onto pallets for quality control testing. Once the uncured rubber has passed the quality control, it is extruded into a top and bottom layer and then calendared together. The sheet is dusted with mica to keep the material from sticking to itself though the vulcanization process. The vulcanization

process uses heat (steam) and pressure to cure the rubber. Once vulcanized, the membrane is trimmed to size, rolled onto a cardboard core, wrapped and labeled.

For sheets wider than 10 feet, calendered sheets are sent through an automated sheet building machine to create sheets up to 50 feet wide. The large sheets also go through a dusting process prior to being sent through the vulcanization process. Once vulcanized, the membrane is trimmed to size, rolled onto a cardboard core, wrapped and labeled.

FIGURE 2
Process Flow Diagram of EPDM

A4, TRANSPORTATION

An average truck and transport distance from the plant to the construction site is assumed.

A5, INSTALLATION

The installation scenario includes the energy and ancillary materials typically consumed to mechanically install non-reinforced EPDM membrane standard-shaped roof of 20,000 square feet, with a total EPDM membrane weight of 8,200 pounds. Waste from packaging includes carboard, paper and wood pallets.

B1 - B7 USE STAGE

Use stage information modules have been omitted from this LCA study.

C1 - C4 END-OF-LIFE STAGE

At the end of building service life and during roof replacement, the EPDM roofing membranes may be reused, recovered and repurposed, or disposed. This study does not take reuse and recovery into account, and it is assumed that insulation is manually removed when the building is decommissioned and disposed in a landfill, for which an average distance and specific end of life LCI is applied. Therefore, it is assumed zero impacts from demolition and waste processing.

LIFE CYCLE ASSESSMENT RESULTS

TABLE 4: RubberGard™ EPDM Single Ply Roofing Membrane, Non-reinforced, adhered with Bonding Adhesive products, per $1 \, m^2$

MPACT ASSESSMENT UNIT	PRODUCTION (A1-A3)	TRANSPORT (A4)	INSTALLATION (A5)	TRANSPORT TO DISPOSAL OF WASTE (C2)	DISPOSAL OF WASTE (C4)
Blobal warming potential (GWP) ¹ ; kg	· · · · · · · · · · · · · · · · · · ·				
5 mils	3.48	0.18	1.27	4.74E-03	3.74E-03
0 mils	4.69	0.25	1.27	6.38E-03	5.04E-03
0 mils	6.85	0.36	1.27	9.32E-03	7.36E-03
epletion potential of the stratospher		•			
5 mils	1.06E-06	7.71E-12	3.66E-07	9.44E-10	6.36E-10
0 mils	1.43E-06	1.04E-11	3.66E-07	1.27E-09	8.57E-10
0 mils	2.08E-06	1.52E-11	3.66E-07	1.86E-09	1.25E-09
utrophication potential (EP); kg N ed	•	1 475 04	1 425 02	3.065.06	2.705.06
5 mils 0 mils	3.72E-03 5.01E-03	1.47E-04 1.97E-04	1.42E-03 1.42E-03	3.06E-06 4.12E-06	3.70E-06 4.99E-06
0 mils	7.32E-03	2.88E-04	1.42E-03	4.12E-06 6.01E-06	7.28E-06
		2.00⊏-04	1.42E-03	6.01E-06	7.200-00
cidification potential of soil and wat 5 mils	1.70E-02	2.43E-03	4.73E-03	2.98E-05	3.60E-05
0 mils	2.29E-02	3.27E-03	4.73E-03 4.73E-03	4.01E-05	4.85E-05
) mils	3.35E-02	4.78E-03	4.73E-03 4.73E-03	5.85E-05	7.08E-05
ormation potential of tropospheric of		4.70L=03	4.73L=00	3.03L-03	7.00L-03
5 mils	0.31	6.26E-02	4.84E-02	9.19E-04	1.08E-03
0 mils	0.42	8.43E-02	4.84E-02	9.19E-04 1.24E-03	1.46E-03
) mils	0.42	0.12	4.84E-02	1.81E-03	2.13E-03
esource Use	0.01	0.12	7.04∟-0∠	1.01L-03	2.10L-00
biotic depletion potential for non-fo	ssil mineral resources (ADP	olomonto): ka Sh ea			
5 mils	3.19E-05	0.00	1.68E-05	5.40E-12	5.68E-12
0 mils	4.30E-05	0.00	1.68E-05	7.27E-12	7.65E-12
) mils	6.28E-05	0.00	1.68E-05	1.06E-11	1.12E-11
biotic depletion potential for fossil r			1.002 00	1.002 11	1.122 11
5 mils	84.6	2.61	47.6	6.31E-02	5.19E-02
) mils	114	3.52	47.6	8.50E-02	6.99E-02
0 mils	166	5.14	47.6	0.12	0.10
enewable primary energy resources	as energy (fuel) (RPRE)2; M	J, NCV			
5 mils	2.12	0.00	0.53	9.87E-05	1.08E-04
0 mils	2.86	0.00	0.53	1.33E-04	1.45E-04
0 mils	4.17	0.00	0.53	1.94E-04	2.12E-04
enewable primary resources as mat	erial (RPRM)2; MJ, NCV				
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
on-renewable primary resources as	energy (fuel) (NRPRE)2; MJ,	NCV			
5 mils	91.2	2.61	49.5	6.35E-02	5.23E-02
0 mils	123	3.52	49.5	8.55E-02	7.05E-02
0 mils	179	5.14	49.5	0.12	0.10
on-renewable primary resources as	material (NRPRM)2; MJ, NC	V			
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
onsumption of fresh water (FW)2; m	3				
5 mils	6.66E-02	0.00	5.13E-02	1.06E-05	9.06E-06
0 mils	8.98E-02	0.00	5.13E-02	1.43E-05	1.22E-05
0 mils	0.13	0.00	5.13E-02	2.09E-05	1.78E-05
econdary Material, Fuel and Recove econdary Materials (SM) ² ; kg	red Energy				
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
enewable secondary fuels (RSF)2; N	IJ, NCV				
	0.00	0.00	0.00	0.00	0.00
5 mils					
5 mils 0 mils	0.00	0.00	0.00	0.00	0.00
		0.00 0.00	0.00 0.00	0.00 0.00	0.00

 $^{^1}$ GWP 100; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5). CO $_2$ from biogenic secondary fuels used in kiln are climate-neutral (CO $_2$ sink = CO $_2$ emissions), ISO 21930, 7.2.7. ² Calculated per ACLCA ISO 21930 Guidance.

60 mils	0.00	0.00	0.00	0.00	0.00
90 mils	0.00	0.00	0.00	0.00	0.00
Recovered energy (RE)2; MJ,	, NCV				
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
90 mils	0.00	0.00	0.00	0.00	0.00
Waste & Output Flows					
Hazardous waste disposed (HW)²; kg				
45 mils	4.32E-05	0.00	0.00	0.00	0.00
60 mils	5.82E-05	0.00	0.00	0.00	0.00
90 mils	8.49E-05	0.00	0.00	0.00	0.00
Non-hazardous waste dispos	sed (NHWD)2; kg				
45 mils	9.73E-02	0.00	0.00	0.00	0.00
60 mils	0.13	0.00	0.00	0.00	0.00
90 mils	0.19	0.00	0.00	0.00	0.00
High-level radioactive waste	(HLRW) ³ ; kg				
45 mils	3.15E-09	0.00	6.14E-10	2.14E-13	2.34E-13
60 mils	4.25E-09	0.00	6.14E-10	2.89E-13	3.15E-13
90 mils	6.20E-09	0.00	6.14E-10	4.21E-13	4.59E-13
Intermediate and low-level ra	adioactive waste (ILLRW) ³ ; kg				
45 mils	1.52E-08	0.00	2.96E-09	1.03E-12	1.12E-12
60 mils	2.05E-08	0.00	2.96E-09	1.39E-12	1.52E-12
90 mils	2.99E-08	0.00	2.96E-09	2.03E-12	2.21E-12
Components for reuse (CRU)³; kg				
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
90 mils	0.00	0.00	0.00	0.00	0.00
Materials for recycling (MR) ³	; kg				
45 mils	2.94E-02	0.00	0.00	0.00	0.00
60 mils	3.97E-02	0.00	0.00	0.00	0.00
90 mils	5.79E-02	0.00	0.00	0.00	0.00
Materials for energy recovery	y (MER)³; kg				
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
90 mils	0.00	0.00	0.00	0.00	0.00
Recovered energy exported	from the product system (EE) ³ ; MJ, No	CV			
45 mils	0.00	0.00	0.00	0.00	0.00
60 mils	0.00	0.00	0.00	0.00	0.00
90 mils	0.00	0.00	0.00	0.00	0.00

^{*} Emerging LCA impact categories and inventory items are still under development and can have high levels of uncertainty that preclude international acceptance pending further development. Use caution when interpreting data in these categories. The following optional indicators are not reported and also have high levels of uncertainty: Land use related impacts, toxicological aspects, and emissions from land use change

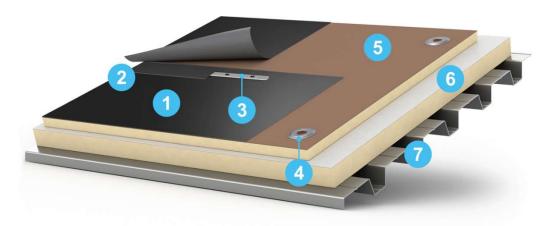
TABLE 5: **RubberGard™ EPDM Single Ply Roofing Membrane**, Non-reinforced, adhered with Jetbond adhesive products, per 1 m²

IMPACT ASSESSMENT UNIT	PRODUCTION (A1-A3)	TRANSPORT (A4)	INSTALLATION (A5)	TRANSPORT TO DISPOSAL OF WASTE (C2)	DISPOSAL OF WASTE (C4)					
ilobal warming potential (GWP)⁴; kg CO₂ eq										
45 mils	3.48	0.18	0.92	4.74E-03	3.74E-03					
60 mils	4.69	0.25	0.92	6.38E-03	5.04E-03					
90 mils	6.85	0.36	0.92	9.32E-03	7.36E-03					
Depletion potential of the stratosph	neric ozone layer (ODP); kg (FC-11 eq								
45 mils	1.06E-06	7.71E-12	6.38E-08	9.44E-10	6.36E-10					
60 mils	1.43E-06	1.04E-11	6.38E-08	1.27E-09	8.57E-10					
90 mils	2.08E-06	1.52E-11	6.38E-08	1.86E-09	1.25E-09					
Eutrophication potential (EP); kg N	eq									
45 mils	3.72E-03	1.47E-04	1.09E-03	3.06E-06	3.70E-06					
60 mils	5.01E-03	1.97E-04	1.09E-03	4.12E-06	4.99E-06					
90 mils	7.32E-03	2.88E-04	1.09E-03	6.01E-06	7.28E-06					
Acidification potential of soil and w	vater sources (AP); kg SO ₂ e	9								
45 mils	1.70E-02	2.43E-03	2.77E-03	2.98E-05	3.60E-05					
60 mils	2.29E-02	3.27E-03	2.77E-03	4.01E-05	4.85E-05					
90 mils	3.35E-02	4.78E-03	2.77E-03	5.85E-05	7.08E-05					
Formation potential of tropospheric	c ozone (POCP); kg O ₃ eq									
45 mils	0.31	6.26E-02	3.74E-02	9.19E-04	1.08E-03					
60 mils	0.42	8.43E-02	3.74E-02	1.24E-03	1.46E-03					
90 mils	0.61	0.12	3.74E-02	1.81E-03	2.13E-03					

³ Calculated per ACLCA ISO 21930 Guidance.

aspects, and emissions from land use change
**Only EPDs prepared from cradle-to-grave life-cycle results and based on the same function, quantified by the same functional unit, and taking account of replacement based on the product reference service life (RSL) relative to an assumed building service life, can be used to assist purchasers and users in making informed comparisons between products.

⁴ GWP 100; 100-year time horizon GWP factors are provided by the IPCC 2013 Fifth Assessment Report (AR5). CO₂ from biogenic secondary fuels used in kiln are climate-neutral (CO₂ sink = CO₂ emissions), ISO 21930, 7.2.7.


esource Use	and and an investment) . I Ob			
	on-fossil mineral resources (ADP	,			
5 mils	3.19E-05	0.00	3.20E-08	5.40E-12	5.68E-12
) mils	4.30E-05	0.00	3.20E-08	7.27E-12	7.65E-12
mils	6.28E-05	0.00	3.20E-08	1.06E-11	1.12E-11
biotic depletion potential for fo	ssil resources (ADP _{fossil}); MJ, NC	V			
5 mils	84.6	2.61	25.5	6.31E-02	5.19E-02
0 mils	114	3.52	25.5	8.50E-02	6.99E-02
0 mils	166	5.14	25.5	0.12	0.10
	urces as energy (fuel) (RPRE)5; M		20.0	0.12	0.10
5 mils	2.12	0.00	0.19	9.87E-05	1.08E-04
0 mils	2.86	0.00	0.19	1.33E-04	1.45E-04
0 mils	4.17	0.00	0.19	1.94E-04	2.12E-04
denewable primary resources as	s material (RPRM) ⁵ ; MJ, NCV				
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
	es as energy (fuel) (NRPRE) ⁵ ; MJ,		0.00	0.00	0.00
			20.0	0.055.00	F 00F 00
5 mils	91.2	2.61	26.6	6.35E-02	5.23E-02
0 mils	123	3.52	26.6	8.55E-02	7.05E-02
0 mils	179	5.14	26.6	0.12	0.10
on-renewable primary resource	es as material (NRPRM)5; MJ, NC	V			
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
onsumption of fresh water (FW		0.00		3.33	3.00
5 mils		0.00	4 225 02	1.06E-05	9.06E-06
	6.66E-02		4.23E-02		
0 mils	8.98E-02	0.00	4.23E-02	1.43E-05	1.22E-05
0 mils	0.13	0.00	4.23E-02	2.09E-05	1.78E-05
econdary Material, Fuel and Re	covered Energy				
Secondary Materials (SM) ⁶ ; kg					
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00
Renewable secondary fuels (RSI		0.00	0.00	0.00	0.00
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
Ion-renewable secondary fuels	(NRSF) ⁶ ; MJ, NCV				
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
90 mils	0.00	0.00	0.00	0.00	0.00
Recovered energy (RE) ⁶ ; MJ, NC		0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
Vaste & Output Flows					
lazardous waste disposed (HW)	⁶ ; kg				
5 mils	4.32E-05	0.00	0.00	0.00	0.00
0 mils	5.82E-05	0.00	0.00	0.00	0.00
0 mils	8.49E-05	0.00	0.00	0.00	0.00
lon-hazardous waste disposed					
5 mils	9.73E-02	0.00	0.00	0.00	0.00
0 mils	0.13	0.00	0.00	0.00	0.00
0 mils	0.19	0.00	0.00	0.00	0.00
ligh-level radioactive waste (HL			<u></u>		
5 mils	3.15E-09	0.00	2.84E-10	2.14E-13	2.34E-13
0 mils	4.25E-09	0.00	2.84E-10	2.89E-13	3.15E-13
0 mils	6.20E-09	0.00	2.84E-10	4.21E-13	4.59E-13
termediate and low-level radio	, ,, ,				
5 mils	1.52E-08	0.00	1.37E-09	1.03E-12	1.12E-12
0 mils	2.05E-08	0.00	1.37E-09	1.39E-12	1.52E-12
0 mils	2.99E-08	0.00	1.37E-09	2.03E-12	2.21E-12
components for reuse (CRU) ⁶ ; k		0.00		2.002 .2	
	_	0.00	0.00	0.00	0.00
5 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
0 mils	0.00	0.00	0.00	0.00	0.00
Materials for recycling (MR)6; kg					
15 mils	2.94E-02	0.00	0.00	0.00	0.00
0 mils	3.97E-02	0.00	0.00	0.00	0.00
	0.012 02				
0 mils	5.79E-02	0.00	0.00	0.00	0.00

⁵ Calculated per ACLCA ISO 21930 Guidance. ⁶ Calculated per ACLCA ISO 21930 Guidance.

45 mils	0.00	0.00	0.00	0.00	0.00				
60 mils	0.00	0.00	0.00	0.00	0.00				
90 mils	0.00	0.00	0.00	0.00	0.00				
Recovered energy exported from t	Recovered energy exported from the product system (EE) ⁶ ; MJ, NCV								
45 mils	0.00	0.00	0.00	0.00	0.00				
60 mils	0.00	0.00	0.00	0.00	0.00				
90 mils	0.00	0.00	0.00	0.00	0.00				

^{**}Only EPDs prepared from cradle-to-grave life-cycle results and based on the same function, quantified by the same functional unit, and taking account of replacement based on the product reference service life (RSL) relative to an assumed building service life, can be used to assist purchasers and users in making informed comparisons between products.

ADDITIONAL ENVIRONMENTAL INFORMATION

EPDM Adhered Roof System

1. Elevate EPDM Membrane

- EPDM membrane has up to 40 years of proven service life and is easily repaired keeping it on roofs and out of landfills.
- 2. Elevate QuickSeam Splice Tape
- 3. Elevate Batten Strip and Fasteners
- 4. Elevate Metal Insulation Plates and Fasteners
- 5. ISOGARD HD Cover Board (optional) Mechanically Attached
- 6. ISOGARD or ISOGARD CG Insulation Mechanically Attached
 - All Elevate polyisocyanurate insulations use EPA accepted blowing agents. Elevate ISOGARD HD
 Cover Board with ISOGARD foam technology and ISOGARD GL and ISOGARD CG insulation
 incorporates a HCFC-free blowing agent that does not contribute to the depletion of the ozone layer
 (ODP-free).
 - The thermal performance of ISOGARD polyiso insulation is up to 40% better than that of major competitors when tested by an independent third party in cold temperature 40°F (4°C) applications according to ASTM C1289 standards. The increased R-value per inch means better thermal performance from the same roofing systems using the same amount of insulation compared to leading competitive products on the market today.

7. Steel Deck

REFERENCES

ACLCA. (2019). ACLCA Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017.

ASTM International. (April 2020). General Program Instructions.

ASTM International & NSF International (2019). Product Category Rules for Single Ply Roofing Membranes. V.2 Ext 2024-113

ecoinvent. (2021). The ecoinvent Database v.3.8. Zurich, Switzerland: The Swiss Centre for Life Cycle Inventories.

ISO 14020. (2000). Environmental labels and declarations – General principles.

ISO 14025. (2006). Environmental labels and declarations, Type III environmental declarations, Principles and procedures.

ISO 14040. (2006). ISO 14040: Environmental Management – Life Cycle Assessment – Principles and Framework.

ISO 14044. (2006/Amd 1:2017/Amd 2:2020). Environmental management – Life cycle assessment – Requirements and guidelines

ISO 21930. (2017). ISO 21930; Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

Long Trail Sustainability. (2021). DATASMART (ES-EI Database). Huntington, VT: Long Trail Sustainability.

National Renewable Energy Laboratory. (2015). U.S. Life-Cycle Inventory (LCI) database.

PRé Sustainability. (2020). SimaPro Vers. 9.1.0.8. www.pre-sustainability.com/simapro.

US EPA. (2014). Tool for the Reduction of Assessment of Chemical and Other Environmental Impacts (TRACI).

US EPA. (2022). Emissions & Generation Resource Integrated Database (eGRID).

26 Century Boulevard, Suite 205

Nashville, TN 37214

1.800.428.4442

ElevateCommercialBP.com