

Aggregates

Environmental Product Declaration

This document is a product-specific Type III Environmental Product Declaration (EPD) for aggregate product manufactured by 3D Concrete, LLC at the facility located in Dayton, NV.

General information

Environmental Product Declaration

This Environmental Product Declaration (EPD) reports the impacts for 1 US ton (dry weight) aggregates, for use in business-to-business (B2B) in accordance with ISO 14025, ISO 21930, and ASTM International's EPD program operator rules.

Product Name	Construction Aggregates					
Manufacturer Name and Address	3D Concrete, LLC					
	20 Ricci Rd					
	Dayton, NV 89403					
	United States					
Program Operator	△↑↑					
	ASTM International					
	http://www.astm.org/EPDs.htm					
Canada Draguam instructions and Varsian Number	ACTM Discourse Operator for Discourse Catagory Pulled					
General Program instructions and Version Number	ASTM Program Operator for Product Category Rules					
	(PCRs) and Environmental Product Declarations (EPDs), General Program Instructions. Version 8.0, revised April					
	29, 2020.					
Declaration Number	EPD 1106					
Declaration (vulniber						
Reference PCR and Version Number	ISO 21930:2017 Sustainability in Building Construction –					
	Environmental Declarations of Building Products serves as					
	the core PCR.					
	Product Category Rule for Environmental Product					
	Declarations: Construction Aggregates – NSF/ASTM 1126-					
	23 V2.0					
EPD Type and Scope (facility/product/average)	Type III EPD					
	Cradle-to-gate (modules A1 to A3)					
	Facility specific					
Defined functional or declared unit	1 US Ton of aggregate					
Product's intended Application and Use	This EPD is intended for business-to-business (B-to-B)					
	audiences.					
Product RSL (Reference Service Life) *	Not Applicable (B modules not included in scope)					
Froduct K3L (Reference Service Life)	Not Applicable (B modules not included in scope)					
Markets of Applicability	United States and Canada					
Date of Issue	December 23 rd , 2025					
Period of Validity	Five years – until December 22 nd , 2030					
Year of reported manufacturer primary data	January 1st, 2023 to December 31st, 2023					
LCA Software and Version Number	Simapro 9.1					
LCI Database and Version Number	USLCI, SmartData, Construction Aggregates – NSF/ASTM 1126-23 Annex A V2.0					

LCIA Methodology and Version Number	TRACI 2.1 v1.04						
Overall Data Quality Assessment Score	2.68						
The sub-category PCR review was conducted by:	Industrial Ecology Consultants, Thomas P. Gloria, Ph.D						
	t.gloria@industrial-ecology.com						
This declaration was independently verified in accordance with ISO 14025: 2006. ISO 21930:2017 serves as the core PCR. Sub-category PCR: NSF/ASTM 1126: Construction Aggregates Product Category Rule	□ Internal ☑ External						
This life cycle assessment was conducted in	Nawal Shoaib						
accordance with ISO 14044 and the reference PCR	nawal@climateearth.com						
by:	Climate Earth, Inc. 137 Park Place, Suite 204, Point EPDs made easy						
	137 Park Place, Suite 204, Point EPDs made easy						
	Richmond, CA, 94801						
	(415) 391-2725 • http://www.climateearth.com						
This life cycle assessment was independently	Thomas P. Gloria, PhD						
verified in accordance with ISO 14044 and the	t.gloria@industrial-ecology.com						
reference PCR by:	Industrial Ecology Consultants						
	35 Bracebridge Rd.						
	Newton, MA 02459-1728						
	(617) 553-4929						
	http://www.industrial-ecology.com						
Explanatory material may be obtained from the	Vance DeMars						
following:	VP of Operations						
	3D Concrete, LLC						
	775-348-1898						
	Sparksqc@3dconcrete.com						
*Only applicable where the LCA/EPD includes Modu	le B.						

Products covered in this facility-average EPD are detailed in Table 1. All products contain 100% construction aggregate. No hazardous materials were used in the manufacture of these products.

Table 1: Products manufactured at the Dayton Quarry

Product Name	Product Description	ASTM Standard
3/4 " Drain Rock	3/4 " Drain Rock	ASTM C33
Washed #67 Concrete Rock	Washed #67 Concrete Rock	ASTM C33
Washed 3/8 " Chips	Washed 3/8 " Chips	ASTM C33
Concrete Sand	Concrete Sand	ASTM C33
Washed Sand	Washed Sand	ASTM C33
De-Icing Sand	De-Icing Sand	ASTM C33
Type II Class B Base	Type II Class B Base	ASTM C33
3/4" x 1.5 " Natural Cobbles	3/4" x 1.5 " Natural Cobbles	ASTM C33
1" x 3" Semi Round	1" x 3" Semi Round	ASTM C33
4 " x 8 " Semi Round	4 " x 8 " Semi Round	ASTM C33
24" Minus Semi Round	24" Minus Semi Round	ASTM C33
#4 x #8 Chips	#4 x #8 Chips	ASTM C33
3/8 " Screenings { NDOT 3/8"	3/8 " Screenings { NDOT 3/8" Type 11	ASTM C33
Type 11 (#8 Conc Agg)	(#8 Conc Agg)	
Ultra Fines	Ultra Fines	ASTM C33

LCA Study

System boundary

This study captures the following mandatory cradle-to-gate (A1-A3) life cycle product stages (as illustrated in Figure 1):

A1 - Extraction and processing of raw materials including fuels used in extraction and transport within the process.

A2 – Specific transportation of raw materials from extraction site or source to manufacturing site (including any recovered materials from source to be recycled in the process) and including empty backhauls and transportation to interim distribution centers or terminals.

A3 – Manufacturing of the product, including all energy and materials required and all emissions and wastes produced.

	Construction Process Product Stage Stage				Use Stage					End of Life Stage						
ľ	Αl	A2	А3	A4	A5	В1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4
	Raw material supply	Transport	Manufacturing	Transport	Construction-installation process	esn	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal
	X	X	X	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Figure 1. Life-Cycle Stages and Modules (Note: MND = module not declared; x = module included)

Except as noted above, all other life cycle stages as described in Figure 1 are excluded from the LCA study. The following processes are also excluded from the study:

- 1. Production, manufacture, and construction of manufacturing capital goods and infrastructure;
- 2. Production and manufacture of production equipment, delivery vehicles, and laboratory equipment;
- 3. Personnel-related activities (travel, furniture, office supplies);
- 4. Fuel used to transport personnel around the mine and sand & gravel facility.
- 5. Energy and water use related to company management and sales activities.

The main processes included in the system boundary are illustrated in Figure 2.

System Boundary

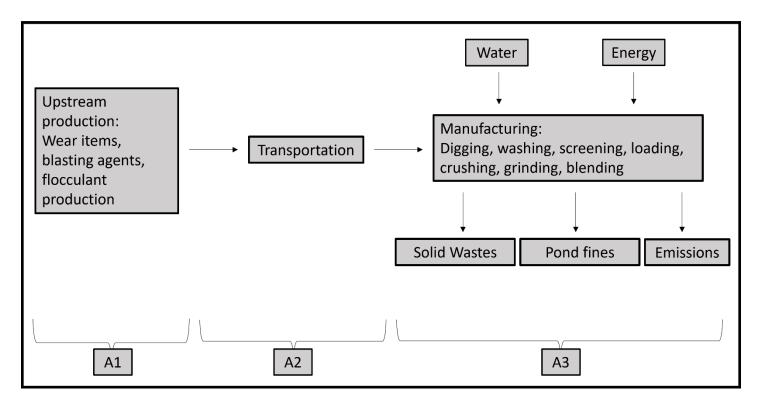


Figure 2. Main Processes Included in System Boundary

Explanatory materials may be requested by contacting:

Vance DeMars VP of Operations 3D Concrete, LLC 775-348-1898 Sparksqc@3dconcrete.com

Secondary data sources

A list of each secondary with its LCI data sources is provided below.

Diesel: USLCI process (2020): "Diesel, combusted in industrial equipment - Northern America"

Electricity: U.S. DOE NETL (2020)

Flocculant: "Polyacrylamide {GLO}| polyacrylamide production | Cut-off, U"

Lubricating oil: US-EI process (2021): "Lubricating oil, at plant/US"

Truck Transport: USLCI process (2020): "Transport, combination truck, short-haul, diesel powered, West/tkm/RNA"

Tires: US-EI process (2021): "Synthetic rubber, at plant/US- US-EI U"

Steel wear parts: US-EI process (2021): "Steel, low-alloyed, at plant/US- US-EI U"

Waste: EcoInvent 3.10 (2023): "Municipal solid waste {RoW}| treatment of, sanitary landfill | Cut-off, U"

Water: EcoInvent 3.10 (2023): "Water, unspecified natural origin/m3"

Data gaps, assumptions, and limitations

Electrical data collected for this plant included the entire plant. Some of the electricity reported may not be used directly in the production of the above mentioned products at quarry.

Environmental Impacts

Cradle to Gate (A1-A3) facility average impact results per 1 US ton (short ton, TN.SH) for construction aggregates produced at Dayton Quarry (see Table 1) are outlined in Table 2.

Table 2: Cradle-to-Gate Impact Results for Dayton Quarry Covered in Study per 1 US ton

Impact category	Unit	A1	A2	A3	A1 to A3
Global warming	kg CO2 eq	0.43	0.01	3.75	4.19
Ozone depletion	kg CFC-11 eq	4.93E-08	2.46E-13	2.98E-09	5.23E-08
Eutrophication	kg N eq	1.73E-03	4.50E-06	2.36E-03	4.10E-03
Acidification	kg SO2 eq	1.88E-03	7.47E-05	0.04	0.04
Smog	kg O3 eq	0.02	1.91E-03	1.23	1.25
Abiotic depletion non-fossil mineral	kg Sb eq	4.76E-06	х	3.59E-09	4.77E-06
Abiotic depletion (fossil fuels)	MJ	5.31	0.08	52.50	57.90
Renewable primary energy resources as energy	MJ	0.26	х	-1.77E-03	0.26
Renewable primary resources as material	MJ	х	х	х	х
Non-renewable primary resources as energy	MJ	5.74	0.08	52.50	58.30
Non-renewable primary resources as material	MJ	х	х	х	х
Consumption of fresh water	m3	-1.30E-03	x	0.34	0.34
Secondary materials	kg	х	х	х	х
Renewable secondary fuels	MJ	х	х	х	х
Non-renewable secondary fuels	MJ	х	х	х	х
Recovered energy	MJ	х	х	х	х
Hazardous waste disposed	kg	х	х	х	х
Non-hazardous waste disposed	kg	х	х	0.04	0.04
High-level radioactive waste	m3	2.46E-10	х	-7.74E-12	2.39E-10
Intermediate and low-level radioactive waste	m3	1.26E-09	Х	-3.72E-11	1.22E-09
Components for reuse	kg	х	х	х	х
Materials for recycling	kg	х	Х	0.02	0.02
Materials for energy recovery	kg	х	х	0.01	0.01
Recovered energy exported from product system	MJ	х	х	х	Х
Calcination	kg CO2 eq	х	Х	Х	х
Biogenic CO2 emissions	kg CO2 eq	х	х	х	х

This EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturers or programs, as the EPD results may not be entirely comparable. Any EPD comparison must be carried out at the construction works level per ISO 21930:2017 guidelines. The results of this EPD reflect an average performance by the product and its actual impacts may vary on a case-to-case basis.

Cradle to Gate (A1-A3) facility average impact results per 1 metric tonne for construction aggregates produced at Dayton Quarry (see Table 1) are outlined in Table 3

Table 3: Cradle-to-Gate Impact Results for Dayton Quarry Covered in Study per 1 metric tonne

Impact category	Unit	A1	A2	A3	A1 to A3	
Global warming	kg CO2 eq	0.48	0.01	4.13	4.61	
Ozone depletion	kg CFC-11 eq	5.43E-08	2.71E-13	3.29E-09	5.76E-08	
Eutrophication	kg N eq	1.91E-03	4.96E-06	2.61E-03	4.52E-03	
Acidification	kg SO2 eq	2.08E-03	8.23E-05	0.04	0.04	
Smog	kg O3 eq	0.02	2.11E-03	1.36	1.38	
Abiotic depletion non-fossil mineral	kg Sb eq	5.25E-06	х	3.95E-09	5.25E-06	
Abiotic depletion (fossil fuels)	MJ	5.85	0.09	57.80	63.80	
Renewable primary energy resources as energy	MJ	0.29	х	-1.95E-03	0.29	
Renewable primary resources as material	MJ	х	х	х	х	
Non-renewable primary resources as energy	MJ	6.32	0.09	57.80	64.20	
Non-renewable primary resources as material	MJ	х	х	х	х	
Consumption of fresh water	m3	-1.43E-03	x	0.37	0.37	
Secondary materials	kg	х	х	х	х	
Renewable secondary fuels	MJ	x	x	x	х	
Non-renewable secondary fuels	MJ	x	x	x	х	
Recovered energy	MJ	x	x	x	х	
Hazardous waste disposed	kg	х	х	х	х	
Non-hazardous waste disposed	kg	x	x	0.05	0.05	
High-level radioactive waste	m3	2.72E-10	x	-8.53E-12	2.63E-10	
Intermediate and low-level radioactive waste	m3	1.39E-09	х	-4.10E-11	1.35E-09	
Components for reuse	kg	x	x	x	х	
Materials for recycling	kg	х	х	0.02	0.02	
Materials for energy recovery	kg	x	х	0.02	0.02	
Recovered energy exported from product system	MJ	х	х	х	х	
Calcination	kg CO2 eq	х	Х	Х	Х	
Biogenic CO2 emissions	kg CO2 eq	х	Х	Х	Х	

This EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturers or programs, as the EPD results may not be entirely comparable. Any EPD comparison must be carried out at the construction works level per ISO 21930:2017 guidelines. The results of this EPD reflect an average performance by the product and its actual impacts may vary on a case-to-case basis.

References

ISO 21930. (2017). Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services.

ACLCA. (2022). ACLCA Guidance for Assessing Data Quality of Background Life Cycle Inventory (LCI) Datasets.

EarthShift. (2014). US-EI Database. Huntington, VT: EarthShift, LLC.

Ecoinvent. (2023). The ecoinvent Database v.3.10. Zurich, Switzerland: The Swiss centre for Life Cycle Inventories.

EPA. (2012). Tool for the Reduction of Assessment of Chemical and Other Environmental Impacts (TRACI). http://www.epa.gov/ordntrnt/ORD/NRMRL/std/traci/traci.html.

EPA. (2022). eGRID electrical data.

Goedkoop M.J., H. R., & Struijs J., V. Z. (2009). ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisa. http://www.lcia-recipe.net.

ISO 14025. (2006). Environmental labels and declarations, Type III environmental declarations, Principles and procedures.

ISO 14040. (2020). 2006 / Amd 1:2020 Environmental management - Life cycle assessment - Principles and framework.

ISO 14044. (2020). ISO 14044: 2006 / Amd 1:2017 / Amd 2:2020 Environmental management - Life cycle assessment - Requirements and guidelines.

Long Trail Sustainability. (2021). DATASMART (US-EI Database). Huntington, VT: Long Trail Sustainability.

NREL. (2015). U.S. Life Cycle Inventory Database. National Renewable Energy Laboratory.

NSF International. (2024). NSF/ASTM 1126-23 with Errata Product Category Rule for Environmental Product Declarations PCR for Construction Aggregates V2.0.