SYMPOSIA PAPER Published: 01 January 1964

Methods of Quantitative Electron Probe Analysis


Methods of quantitative electron probe analysis using empirical working curves have achieved only partial success because of variations in instrument design, analysis conditions, and homogeneity of standards. These problems have been solved for X-ray fluorescence analysis, but many of the more successful empirical methods cannot be used in electron probe analysis; instead, a more theoretical approach is indicated. In electron probe analysis, quantitative results can be achieved with only pure elements as standards provided: (1) the analysis conditions are carefully selected, (2) the observed intensities can be corrected to obtain the primary intensity actually produced in the specimen, and (3) the relationship of the primary intensity and concentration can be calculated. While present methods of making some of the corrections require improvement and a “universal” theory for relating the primary X-ray intensities to the concentrations still does not exist, the success achieved with this approach indicates that it should be used to the fullest extent before resorting to calibration curves. Moreover, as information is accumulated, the number of cases requiring the use of calibration curves should diminish so that eventually it may be possible to perform quantitative analysis in any system with only pure elements as standards

Author Information

Wittry, David
University of Southern California, Los Angeles, Calif.
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E13
Pages: 128–150
DOI: 10.1520/STP45951S
ISBN-EB: 978-0-8031-6749-0
ISBN-13: 978-0-8031-6603-5