SYMPOSIA PAPER Published: 01 January 1996

A Progress Report on the Use of Electrochemical Noise to Investigate the Effects of Zebra Mussel Attachment on the Corrosion Resistance of AISI Type 304 Stainless Steel and Carbon Steel in Lake Water


The electrochemical noise technique was used to determine the effect of zebra mussel settlement on the corrosion performance of AISI Type 304 stainless steel and carbon steel (ASTM A53 Grade B). These materials represent alloys commonly used for handling untreated Great Lakes water at Ontario Hydro's power generating plants. This work was motivated by a concern that zebra mussel settlement will lead to accelerated attack of these materials as a result of the establishment of stable crevice conditions and the growth of corrosion influencing anaerobic sulfate-reducing bacteria (SRB). Corrosion monitoring was carried out in a field test facility that uses the same untreated Lake Erie water as Ontario Hydro's Nanticoke Thermal Generating Station. The test program extended from May through December 1993. During this period, a number of electrochemical parameters were monitored simultaneously, including coupling current, electrochemical potential noise (EPN), electrochemical current noise (ECN), degree of localization (DoL), and resistance noise (Rn). Differences were observed in the performance of the control samples and the samples to which mussels were attached. The results for the AISI Type 304 stainless steel suggested that over the period monitored, mussel attachment reduced corrosion activity. Similarly, signals from carbon steel, samples exposed to mussels, although initially displaying relatively high corrosion rates, exhibited less corrosion damage than did control samples over the longer term. The reason for this difference in performance is not known but is considered to have resulted from a change in the surface environment as a result of mussel attachment, which appeared to diminish corrosion. One possible explanation may be the generation of inhibitive species by the mussels.

Author Information

Brennenstuhl, AM
Ontario Hydro Technologies, Toronto, Ontario, Canada
Sim, B
Ontario Hydro Technologies, Toronto, Ontario, Canada
Claudi, R
Ontario Hydro, Toronto, Ontario, Canada
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: G01
Pages: 186–200
DOI: 10.1520/STP37960S
ISBN-EB: 978-0-8031-5562-6
ISBN-13: 978-0-8031-2032-7