SYMPOSIA PAPER Published: 01 January 2006

Modeling the Effects of Oversize Solute Additions on Radiation-Induced Segregation in Austenitic Stainless Steels


Oversize solute additions to stainless steels hold promise for reducing radiation-induced segregation (RIS), possibly delaying the onset and severity of irradiation-assisted stress-corrosion cracking (IASCC). The Modified Inverse Kirkendall (MIK) model for RIS in austenitic stainless steels was adapted to include the effects of defect trapping, which is expected to be caused by oversized solutes, on RIS. The model accounts for the sensitivity of RIS to both dose rate and temperature. Model results show that the primary contribution to the reduction in RIS occurs through vacancy trapping and recombination with migrating interstitials, requiring strong solute binding energies on the order of 1.0 eV. The maximum reduction in RIS due to defect trapping increases with dose rate and temperature. The general trends of the model are consistent with experimental data from proton and neutron irradiations.

Author Information

Hackett, MJ
University of Michigan, Ann Arbor, MI
Was, GS
University of Michigan, Ann Arbor, MI
Simonen, EP
Pacific Northwest National Laboratory, Richland, WA
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E10
Pages: 52–64
DOI: 10.1520/STP37568S
ISBN-EB: 978-0-8031-5518-3
ISBN-13: 978-0-8031-3401-0