SYMPOSIA PAPER Published: 01 January 1985

Swelling of AISI Type 304L Stainless Steel in Response to Simultaneous Variations in Stress and Displacement Rate


The void swelling of annealed AISI Type 304L stainless steel was studied to determine the effects of simultaneous variations in several environmental variables, namely, applied stress and displacement rate. It was found that the transient regime of swelling was modified by both variables in much the same way as previously observed in single-variable experiments. Lower displacement rates and applied tensile stresses shortened the transient regime of swelling. In addition, it was discovered that the simultaneous application of lower dose rates and applied stresses shortened the transient regime to no lower than that observed in the unstressed pure iron-nickel-chromium ternary system, or ∼10 displacements per atom (dpa). This implies that the 10 dpa transient may be a generic minimum for iron-based austenitic alloys. Stress and displacement rate appear to act on a common swelling control mechanism, most likely the effectiveness of swelling-inhibitive solutes on void nucleation.

Author Information

Porter, DL
EBR-II Project, Argonne National Laboratory, Idaho Falls, ID
Garner, FA
Hanford Engineering Development Laboratory, Richland, WA
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E10
Pages: 212–220
DOI: 10.1520/STP37363S
ISBN-EB: 978-0-8031-4935-9
ISBN-13: 978-0-8031-0450-1