SYMPOSIA PAPER Published: 01 January 1979
STP34941S

An Analysis of Tapered Double-Cantilever-Beam Fracture Toughness Test for Adhesive Joints

Source

This paper presents an analytical study of the tapered double-cantilever-beam (DCB) fracture mechanics test of polymeric adhesives and joints. The test specimen consists of high modulus metal adherends bonded together by a thin layer, low modulus adhesive. The fracture of the joint is modeled by the growth of a cohesive crack in the adhesive bond. The analysis employs an advanced hybrid-stress finite element method based on the formulation of Muskhelishvili's complex stress functions through a modified complementary energy principle. Numerically exact solutions are obtained for the joints with various geometries and material parameters. The crack-tip stress field, the associated stress intensity factor, and the energy release rate are determined quantitatively for each case. Characteristics of the specimen response and fundamental differences in the crack-tip behavior between a monolithic material and the joint are revealed. Effects of the adherend/adhesive modulus ratio, adhesive layer thickness, specimen geometry, and crack length on the tests are studied. Approximations involved in test results due to the specimen design by a simple beam theory are determined also.

Author Information

Wang, SS
University of Illinois, Urbana, Ill.
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E08
Pages: 651–667
DOI: 10.1520/STP34941S
ISBN-EB: 978-0-8031-4746-1
ISBN-13: 978-0-8031-0364-1