SYMPOSIA PAPER Published: 01 January 1987
STP33850S

Amorphous Transformation of Laves Phase in Zircaloy and Austenitic Stainless Steel Upon Neutron Irradiation

Source

A variety of forms of irradiation have been observed to induce an amorphous phase: heavy ion, proton, and electron. More recently neutron irradiation has been observed to induce an amorphous transformation in Laves precipitates found in Zircaloy and austenitic steel. Up to this point, only conjectures have been made about the irradiation conditions necessary to achieve the amorphous transformation and about the characteristics of a material susceptible to the amorphous transformation. From these conjectures, a theory to explain the amorphous transformation is developed, and its application illustrated by simulation with a computer model. The amorphous transformation of the Zr(Fe, Cr)2 phase in Zircaloy induced by neutron irradiation is used as the example in the model. The theory proposes that during irradiation the free energy of the crystalline state increases beyond that of the amorphous state, and thus in efforts to minimize the free energy of the system the amorphous transformation occurs. The factors that contribute to this increase in free energy include the defect formation energies and the energies of mixing that arise as the lattice is disordered. The later contribution is found to be significant. It is this factor that makes the amorphous transformation possible at defect concentrations lower than required for transformation when defect generation alone is considered.

Author Information

Harris, LL
University of California-Berkeley/General Electric Company, Berkeley, CA
Yang, WJS
Knolls Atomic Power Laboratory, Schenectady, NY
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E10
Pages: 661–675
DOI: 10.1520/STP33850S
ISBN-EB: 978-0-8031-5016-4
ISBN-13: 978-0-8031-0962-9