SYMPOSIA PAPER Published: 01 January 1988
STP27715S

Stable Crack Growth and Fracture Instability Predictions for Type 304 Stainless Steel Pipes with Girth Weld Cracks

Source

Elastic-plastic finite-element fracture mechanics analyses were conducted on 102-mm (4-in.) and 406-mm (16-in.)-nominal-diameter Type 304 stainless steel pipes containing circumferential through-wall cracks located in girth welds. The 406-mm (16-in.) pipe was analyzed for a fixed axial load combined with a monotonically increasing bending moment. The 102-mm (4-in.)-diameter pipe analysis was performed under a four-point bending load. Material J-resistance curves appropriate for each problem were used to initiate and grow the initial crack. Calculations were performed to analyze the 406-mm (16-in.) welded pipe treated as (1) a monolithic pipe entirely composed of base metal and (2) a composite of base metal and weldment. The 102-mm (4-in.) welded pipe analysis modeled the material as a composite of base metal and weldment and utilized a material J-resistance curve generated from an elastic-plastic analysis of a welded compact tension specimen. The results of the 406-mm (16-in.)-diameter pipe analysis demonstrated that the predictions of the extent of stable crack growth and the applied load at fracture instability depend on whether or not the pipe is modeled monolithically or as a composite of base metal and weldment. The 102-mm (4-in.) pipe fracture analysis, using a normalized interpretation of the material J-resistance curve, produced good agreement with corresponding experimental crack growth and deflection data.

Author Information

Cardinal, JW
Southwest Research Institute, San Antonio, TX
Kanninen, MF
Southwest Research Institute, San Antonio, TX
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E08
Pages: 320–331
DOI: 10.1520/STP27715S
ISBN-EB: 978-0-8031-5064-5
ISBN-13: 978-0-8031-1258-2