SYMPOSIA PAPER Published: 01 January 1970
STP26605S

Neutron Dosimetry for Reactor Pressure Vessel Applications

Source

The neutron dosimetry analysis effort discussed is aimed solely at obtaining the most accurate projections of neutron fluence and future radiation embrittlement in the pressure vessel of an operating commercial power reactor. The mechanical property changes in materials for reactor pressure vessel applications are caused by neutron/atomic lattice interactions that are highly sensitive to material composition, irradiation temperature, and population and energy of the damage causing neutrons. Of these, the neutron fluence and spectra are most difficult to define accurately for a given irradiation condition since neither can be measured directly. Nevertheless, if radiation induced changes are to be understood and subsequently used as a basis for projecting changes in real reactor components, the neutron dosimetry analysis must be as precise as possible; the ultimate results of any such projections are highly dependent upon the accuracy of the neutron spectrum and neutron fluence used as input. Improvements in both of these areas, as well as in standardization of approaches, are needed for accurate projection of radiation induced changes in reactor pressure vessels. The current status of neutron dosimetry in power reactors is reviewed, and guidelines are provided for improving future dosimetry of reactor pressure vessel surveillance programs.

Author Information

Serpan, CZ
Naval Research Laboratory, Washington, DC
Morgan, WC
Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, Wash.
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E10
Pages: 3–16
DOI: 10.1520/STP26605S
ISBN-EB: 978-0-8031-4593-1
ISBN-13: 978-0-8031-0014-5