SYMPOSIA PAPER Published: 01 January 1990

Effects of Environmental and Microstructural Variables on the Plastic Deformation of Metal Matrix Composites Under Changing Temperature Conditions


A first order elastic-plastic model for the deformation of aligned, whisker-rein-forced metal matrix composites is developed. This model explains the experimentally observed weakening of these composites under thermal cycling conditions. This elastic plastic model and a more sophisticated power-law creep based model are used to demonstrate how deformation under stress and thermal cycling conditions will be affected by various environmental and microstructural variables. It is shown that the axial deformation rate is expected to increase with increasing amplitude and frequency of temperature cycles, and deformation rate should decrease with increasing matrix strength and whisker length. However, even continuous fiber reinforcement will allow for easy deformation if the composite is subjected to shear loading.

Author Information

Daehn, GS
The Ohio State University, Columbus, OH
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E08
Pages: 70–86
DOI: 10.1520/STP25392S
ISBN-EB: 978-0-8031-5138-3
ISBN-13: 978-0-8031-1385-5