SYMPOSIA PAPER Published: 01 January 1994

Creep-Fatigue Damage Analysis of Solder Joints


An anisotropic model of continuum damage mechanics has been developed to predict the creep-fatigue life of solder joints. With the help of the finite element method, the stress, strain, and damage fields of the time-dependent and temperature-dependent solder can be obtained. The main advantages of this model include: (1) It can predict the initial crack location and time and the subsequent crack growth paths; (2) The damage analysis is almost the same as in traditional viscoelastic finite element analysis; (3) It can be applied to a complex structure with any loading; (4) It provides a full-field damage investigation of the structure. This damage theory can be used for various solder joints and also can be applied to analyze the creep-fatigue problems of other ductile and temperature-dependent materials. Extensive experiments including uniaxial creep, uniaxial fatigue, tension-torsion, Moiré, and bimaterial tests were performed to validate the new model. These validations and comparisons indicate that this model can predict adequately crack growth paths and fatigue lives of solder joints.

Author Information

Ju, SH
University of Wisconsin, Madison, WI
Kuskowski, S
U.S.D.A. Forest Service, Forest Products Laboratory, Madison, WI
Sandor, BI
University of Wisconsin, Madison, WI
Plesha, ME
University of Wisconsin, Madison, WI
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E08
Pages: 1–21
DOI: 10.1520/STP23913S
ISBN-EB: 978-0-8031-5260-1
ISBN-13: 978-0-8031-1994-9