SYMPOSIA PAPER Published: 01 January 1987

A New Electromechanical Binding/Dynamometer for Actively Controlled Snow Ski Binding Systems


This paper describes the design and performance evaluation of a second generation integral binding/dynamometer. To reduce cross-sensitivity, the dynamometer consists of seven elastic elements that are designed to offer minimal mechanical coupling. Through judicious location of the elements and interconnection of strain gages fixed to the elements, the dynamometer signals indicate the generalized loading (that is, six load components) between the boot and ski. Dynamometer elements are contained within the housing of the binding. The housing is fixed to the ski using a technique that makes the dynamometer readings immune to ski flexure. Accuracy checks of the dynamometer under a variety of loadings have documented its ability to consistently resolve forces to within 10% and moments to within 5%.

The binding mechanism can be activated either manually or electrically. Electrical actuation is accomplished by means of a solenoid; manual operation is facilitated by locating manual controls to the front rather than the rear of the boot. To insure that the binding releases when the solenoid is energized, a special mechanism isolates the force, which the solenoid must overcome, from the variable contact forces developed between the boot and binding. By means of laboratory testing under loading typical of release conditions, the reliability of the mechanism to decouple the boot from the ski has been established.

Author Information

Wunderly, G
University of California, Davis, CA
Hull, ML
University of California, Davis, CA
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: F27
Pages: 249–259
DOI: 10.1520/STP23192S
ISBN-EB: 978-0-8031-5003-4
ISBN-13: 978-0-8031-0936-0