SYMPOSIA PAPER Published: 01 January 1989

Strain Intensity Factor Approach for Predicting the Strength of Continuously Reinforced Metal Matrix Composites


A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0° and ±45° plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was developed to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Far-field strains at failure were calculated from the strain intensity factor, and then strengths were calculated from the far-field strains using uniaxial stress-strain curves. The predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only ±45° plies. This approach should be valid for other metal matrix composites that have continuous fibers.

Author Information

Poe, CC
NASA Langley Research Center, Hampton, VA
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: D30
Pages: 173–193
DOI: 10.1520/STP22855S
ISBN-EB: 978-0-8031-5089-8
ISBN-13: 978-0-8031-1270-4