SYMPOSIA PAPER Published: 01 January 1992
STP19214S

Selection and Development of Chemical-Resistant, Flame-Resistant Protective Gloves for U.S. Navy Shipboard Use

Source

The U.S. Navy currently uses several kinds of chemical protective gloves for protecting personnel in the shipboard environment. Navy shipboard work environments present potential exposure to various acids, bases, organic solvents, can a variety of specialty chemicals, fuels and lubricants. Navy personnel must routinely handle these substances in the course of their duties, and hand protection must be provided. To meet this need, the Navy maintains a large inventory of different gloves rated for specific chemical handling applications. The U. S. Navy Clothing and Textiles Research Facility has sponsored a research study with the goal to develop a single glove which is resistant to flame exposure as well as the priority chemical substances found in the shipboard environment. Certain minimum physical property requirements have also been defined. The experimental work to support this effort has been carried out by TRI/Environmental, Inc., Austin, Texas.

This paper describes interim results of this study, which has been divided into four major phases: (1) surveying existing glove materials likely to meet Navy criteria; (2) identifying new glove candidate materials, (3) evaluating candidate materials; and (4) fabricating prototype gloves. No one glove or glove material was identified which could provide the broad chemical resistance required by the Navy, while also having adequate physical properties. Furthermore, nearly all commercial gloves tested lacked sufficient flame resistance. The project team pursued an approach which combined flame resistant elastomer gloves with film-based glove products, utilizing the film-based glove as an inner liner. The combination was shown to have the potential to overcome both the traditional lack of ruggedness for film gloves and the lack of broad chemical resistance offered by elastomer gloves. Initial prototype efforts have focused on methods to “marry” the two gloves into a single unit, providing a higher level of protection with improved tactility and dexterity for the wearer.

Author Information

Stull, JO
Barrier and Materials Technology Division and TRI/Environmental, Inc., Austin, Texas
White, DF
Barrier and Materials Technology Division and TRI/Environmental, Inc., Austin, Texas
Heath, CA
U.S. Navy Clothing and Textile Research Facility, Natick, MA
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: F23
Pages: 867–884
DOI: 10.1520/STP19214S
ISBN-EB: 978-0-8031-5194-9
ISBN-13: 978-0-8031-1430-2