SYMPOSIA PAPER Published: 01 January 1996

Characterization of Crack Growth Resistance Under Cyclic Loading in the Presence of an Unbridged Defect in Fiber-Reinforced Titanium Metal Matrix Composites


This paper considers the experimental characterization of crack growth from unbridged defects in fiber-reinforced titanium metal matrix composites subjected to cyclic loading by the use of fracture mechanics parameters. The conditions under which parameters such as the nominal applied stress intensity range, ΔKapp, the nominal maximum stress intensity factor, Kmax, and the effective stress intensity range, ΔKeff, are of use, and their experimental measurement are considered. Effects of fiber fracture, stress intensity factor range, mean stress, loading configuration (bending versus tension), test temperature, crack size, crack shape, and fiber-matrix interfacial strength on fatigue crack growth resistance are highlighted. The experimental determination of crack arrest in such composites is outlined.

Author Information

Bowen, P
School of Metallurgy and Materials/IRC in Materials for High Performance Applications, The University of Birmingham, Edgbaston, UK
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: D30
Pages: 461–479
DOI: 10.1520/STP18236S
ISBN-EB: 978-0-8031-5320-2
ISBN-13: 978-0-8031-2039-6