SYMPOSIA PAPER Published: 01 January 1996

Inelastic Deformation Mechanisms in SCS-6/Ti 15-3 Metal Matrix Composite (MMC) Lamina Under Compression


An investigation was undertaken to study the inelastic deformation mechanisms in [0]8 and [90]8 Ti 15-3/SCS-6 lamina subjected to pure compression. Monotonic tests were conducted at room temperature (RT), 538°C, and 650°C. Results indicate that mechanical response and deformation characteristics were different in monotonic tension and compression loading whereas some of those differences could be attributed to residual stress effects. There were other differences because of changes in damage and failure modes. The inelastic deformation in the [0]8 lamina under compression was controlled primarily by matrix plasticity, although some evidence of fiber-matrix debonding was observed. Failure of the specimen in compression was due to fiber buckling in a macroscopic shear zone (the failure plane). The inelastic deformation mechanisms under compression in [90]8 lamina were controlled by radial fiber fracture, matrix plasticity, and fiber-matrix debonding. The radial fiber fracture was a new damage mode observed by MMCs. Constitutive response was predicted for both the [0]8 and [90]8 laminae, using AGLPLY, METCAN, and Battelle's Unit Cell FEA model. Results from the analyses were encouraging.

Author Information

Newaz, GM
Wayne State University, Detroit, MI
Majumdar, BS
Universal Energy Systems, Inc., Dayton, OH
Brust, FW
Battelle Memorial Institute, Columbus, OH
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: D30
Pages: 208–230
DOI: 10.1520/STP18225S
ISBN-EB: 978-0-8031-5320-2
ISBN-13: 978-0-8031-2039-6