SYMPOSIA PAPER Published: 01 January 1994

Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy


The cyclic, high-temperature deformation behavior of a wrought cobalt-base superalloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760°C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760°C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant, λ (the ratio of engineering shear strain amplitude to axial strain amplitude, γaa), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, ̅ (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90° with λ = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760°C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (λ = 1.73 and ̅ = 0°) and out-of-phase (λ = 1.73 and ̅ = 90°) axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.

Author Information

Bonacuse, PJ
U.S. Army Research Laboratory, Vehicle Propulsion Directorate, NASA Lewis Research Center, Cleveland, OH
Kalluri, S
NYMA, Inc., NASA Lewis Research Center, Cleveland, OH
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E08
Pages: 204–229
DOI: 10.1520/STP18126S
ISBN-EB: 978-0-8031-5263-2
ISBN-13: 978-0-8031-1989-5