SYMPOSIA PAPER Published: 01 January 1992

The Effects of Nickel on Microstructural Development and Microchemical Changes in Neutron-Irradiated Fe-Cr-Mn Based Steels


Microstructural changes and solute segregation in austenitic Fe-Cr-Mn-Ni alloys have been studied after neutron irradiation to 25 dpa (maximum) in FFTF/MOTA. Voids were nucleated in all of the specimens in the temperature range of 420 to 650°C, and a swelling peak was observed to form at 550°C. The void suppression effect of nickel additions did not occur in these alloys. Precipitates were formed in the matrix and/or on grain boundaries and were mostly identified as M23C6. The composition in the grain boundary area changed, and the chromium (Cr) concentration near the precipitates became higher. On the other hand, manganese and chromium were depleted, and nickel was enriched in the grain boundary area, but without precipitation. Other phases such as ferrite and sigma could not be recognized. Thus, it was revealed that the addition of nickel to Fe-Cr-Mn alloy stabilizes the austenite even in the grain boundary area where segregation is marked.

Author Information

Takahashi, H
Faculty of Engineering, Hokkaido University, Sapporo, Japan
Ohnuki, S
Faculty of Engineering, Hokkaido University, Sapporo, Japan
Garner, FA
Battelle Pacific Northwest Laboratory, Richland, WA
Ben-fu, H
The University of Science and Technology, Beijing, China
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E10
Pages: 969–978
DOI: 10.1520/STP17924S
ISBN-EB: 978-0-8031-5187-1
ISBN-13: 978-0-8031-1477-7