SYMPOSIA PAPER Published: 01 January 1991
STP17777S

Thermodynamic and Fluid Mechanic Analyses of Rapid Pressurization in a Dead-End Tube

Source

Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41MPa (6,000psi) lead to peak temperatures well in excess of the autoignition temperature (750K) of polytetrafluoroethylene (PTFE). These findings are in accord with experiments that have resulted in ignition and combustion of the PTFE, leading to the melting and/or combustion of the stainless steel braiding and catastrophic failure.

A purely thermodynamic model assumes filling to be complete upstream of a flow-limiting orifice before any gas passes through the orifice. Results show that peak temperatures as high as 4,800K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from the code show the recompression effect but predict much lower peak temperatures than the thermodynamic model. The difference is due mostly to the complete lack of mixing in the thermodynamic model.

Author Information

Leslie, IH
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: G04
Pages: 399–413
DOI: 10.1520/STP17777S
ISBN-EB: 978-0-8031-5170-3
ISBN-13: 978-0-8031-1461-6