SYMPOSIA PAPER Published: 01 January 1995

Effect of Beryllium on the Burn Propensity of Titanium Alloys


The burn characteristics of titanium alloy systems have limited their usefulness in environments that are typical during normal aircraft gas turbine engine operation. The density advantages of replacing nickel base superalloys would result in superior performance, fuel burn, and pay load. A novel approach to increasing burn resistance was based on reducing the alloy liquidus temperature below the temperature where catastrophic oxidation occurs. Beryllium was chosen as an alloying agent to titanium base alloys because of its ability to depress the liquidus temperature. Emphasis was made to evaluate burn characteristics in a compressor type environment. To improve burn resistance over baseline alloys a beryllium content between 10 and 18 atomic percent is required.

Author Information

Schmees, RM
Materials and Mechanics Engineering, Pratt & Whitney, West Palm Beach, FL
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: G04
Pages: 86–99
DOI: 10.1520/STP16429S
ISBN-EB: 978-0-8031-5314-1
ISBN-13: 978-0-8031-2004-4