SYMPOSIA PAPER Published: 01 January 1997
STP16315S

Creep Crack Growth Behavior of Aluminum Alloy 2519: Part II—Numerical Analysis

Source

The experimental analysis of high temperature fracture in Aluminum Alloy 2519-T87 presented in Part I of this paper highlighted the creep-brittle fracture characteristics of the material and showed reasonable correlation of crack growth rates with the stress intensity factor K. Part II continues this investigation numerically using growing crack finite element analyses. Experimentally observed crack growth histories of four aluminum 2519-T87 compact specimens are enforced by controlling the rate of release of finite element nodes along the crack growth path to gain insight into the relation of the crack tip fields to far field fracture parameters and to crack growth rates. A variable time-step, nodal-release algorithm is presented to model the high strain rates that occur during the initial stages of crack growth. The numerical results indicate an initial transient period of crack growth followed by a quasi-steady-state crack growth regime in which the crack tip fields change slowly with increasing crack length. Transition of crack growth to the quasi-steady-state regime, where similitude and small-scale creep conditions roughly exist, is given by a transition time tg that depends on the crack growth history and material properties. Excellent correlation of the stress intensity factor K with the crack growth rates is observed after time tg. Experimental difficulties in measuring the creep component of the load-line deflection rate are also discussed.

Author Information

Hall, DE
Louisiana Tech University, Ruston, LA
Hamilton, BC
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA
McDowell, DL
The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
Saxena, A
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E08
Pages: 19–36
DOI: 10.1520/STP16315S
ISBN-EB: 978-0-8031-5356-1
ISBN-13: 978-0-8031-2413-4