SYMPOSIA PAPER Published: 01 January 1995

Micromechanics of Fiber-Matrix Interface and Fracture of Advanced Composites with Engineered Interfaces


An experimental method is presented to achieve high strength and high fracture toughness of polymer matrix composites by means of an organic interlayer between fiber and matrix. Extensive mechanical tests and chemical/morphological analyses are performed with a special emphasis being placed on the fiber-matrix interface to characterize the interfacial bonding and the corresponding failure mechanisms taking place in the composite during fracture. To support the observed experimental results, also presented is a parametric theoretical study based on thermo-mechanics and finite element analyses of the single fiber cylindrical composite model whereby important roles of the interlayer are evaluated in controlling the stress transfer, debonding process and the generation of thermal residual stresses. In light of the foregoing study, three concepts of engineered interface are proposed and their practical implications discussed. They include weak interface-bond layer, microductile/compliant layer and compensating layer.

Author Information

Kim, J-K
Australian National University, Canberra, ACT, Australia
Mai, Y-W
University of Sydney, Sydney, NSW, Australia
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E08
Pages: 125–139
DOI: 10.1520/STP14589S
ISBN-EB: 978-0-8031-5294-6
ISBN-13: 978-0-8031-1882-9