SYMPOSIA PAPER Published: 01 January 2000
STP13461S

Long-Term Endurance Determinations Using Traditional Accelerated Aging in Combination with Oxidative Stability Testing Resorting to Isothermal DSC Measurements of Oxidation Induction and Maximum Times

Source

During the service life of electrical equipment, organic electrical insulating materials used at elevated service temperatures can degrade as a result of progressive chemical reactivity. It is therefore essential that normal operating temperature limits be established for such materials. The traditional approach is to accelerate the degradation process with simultaneous testing at moderately elevated temperatures above the intended service temperatures of both the candidate material and a control reference material. With proper application of a chemical kinetic model, a service limit is established for the candidate material based on the comparative test performance, with the control having known long-term thermal service capabilities. There are practical limits on the maximum test temperatures and corresponding minimum test times to ensure an accurate representation of the service degradation mechanism during the test program. This results in an onerous, unavoidably protracted test time for these thermal aging studies. A number of relatively rapid analytical techniques have been proposed to reduce the test times without compromising the accuracy of the determined service limit. The most successful of these often involve hybrid testing, as a combination of a rapid analytical technique and part of the traditional program at the higher test temperatures and shorter test times, to result in a desirable and substantial reduction in test program times. This paper will review the principles of the traditional program, and the theory and initial results of a proposed hybrid technique based on oxidative stability testing using oxidation induction.

Author Information

Giannoni, SG
Underwriters Laboratories, Inc., Melville, NY
Montanari, GC
University of Bologna, Bologna, Italy
Motori, A
University of Bologna, Bologna, Italy
Hasan, O
General Electric Corporate Research and Development, Schenectady, NY
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: D09
Pages: 136–148
DOI: 10.1520/STP13461S
ISBN-EB: 978-0-8031-5427-8
ISBN-13: 978-0-8031-2613-8