SYMPOSIA PAPER Published: 01 January 1997

Anelasticity of Single and Polycrystalline Materials by the Resonant Sphere Technique (RST)


The resonant sphere technique (RST) has been developed for the purpose of measuring elasticity and anelasticity of crystals. This method has various advantages, and introduction of the Fourier Transform (FT) method to RST makes data acquisition possible with a 1 K temperature interval. In the RST, anisotropic elastic moduli Cij and internal friction Qij-1 of a specimen are determined by inversion calculations for a sufficient number of spectral data of resonant peak frequency f and half-width 2δf. In single crystals of silicates and oxides, resonance peaks are very sharp and their relative half-widths 2δf/f are of the order of 10-4.

A simple relationship of log Q-1 = a — bv2 seems to hold between elasticity and internal friction, where a and b are constants and v2 = M/ρ,M is elastic modulus, and ρ is density. This may be applicable even to anisotropic elasticity Cij and internal friction in Qij-1. This relationship is phenomenologically understood by a thermal activation process.

Author Information

Suzuki, I
Okayama University, Okayama, Japan
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E28
Pages: 267–277
DOI: 10.1520/STP11754S
ISBN-EB: 978-0-8031-5362-2
ISBN-13: 978-0-8031-2417-2