SYMPOSIA PAPER Published: 01 January 1997
STP11371S

Creep-Fatigue Interaction in Delamination Crack Propagation of Advanced CFRPs at High Temperatures

Source

The objective of this study is to elucidate creep-fatigue interaction in Mode I delamination crack propagation of polymers reinforced by carbon fibers at high temperatures. The materials tested are two unidirectionally reinforced laminates, AS4/PEEK (carbon fiber: AS4, matrix: poly-ether-ether-ketone) and T800H/PMR-15 (carbon fiber: T800H, matrix: polyimide). Crack propagation tests are conducted in cyclic loading conditions with and without hold(s) at maximum tension and zero load at 473K for AS4/PEEK laminates and 573K for T800H/PMR-15 laminates, respectively. In fatigue with high frequency, the crack propagation rate per unit cycle da/dN is correlated well with the stress intensity factor range ΔK. However, the crack propagation in AS4/PEEK laminates depends strongly on the load waveform, while that in T800H/PMR-15 laminates is independent of it. The crack propagation in AS4/PEEK laminates is accelerated by the tensile load hold due to the creep deformation of matrix and it is purely time-dependent. In the time-dependent crack propagation, the rate per unit time da/dt is correlated well with the stress intensity factor K at the hold. On the other hand, the time-dependent crack propagation is decelerated by the zero-load-hold because of the creep recovery of matrix.

Author Information

Uematsu, Y
Graduate School of Engineering, Osaka University, Osaka, Japan
Kitamura, T
Graduate School of Engineering, Kyoto University, Kyoto, Japan
Ohtani, R
Graduate School of Engineering, Kyoto University, Kyoto, Japan
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: D30
Pages: 110–132
DOI: 10.1520/STP11371S
ISBN-EB: 978-0-8031-5360-8
ISBN-13: 978-0-8031-1491-3