SYMPOSIA PAPER Published: 01 January 2001

Effects of Microstructure on the Strength and Fracture Toughness of Polysilicon: A Wafer Level Testing Approach


Specimens have been developed to measure the strength and fracture toughness, of polycrystalline silicon and silicon carbide at the micron scale. The specimens have been fabricated using standard microelectromechanical systems (MEMS) processing techniques, and so have characteristic dimensions comparable to typical MEMS devices (notches, cracks and uncracked ligaments of several microns). They are fully integrated with simultaneously fabricated electrostatic actuators that are capable of providing sufficient force to ensure failure under monotonic loading. Thus the entire experiment takes place on-chip, eliminating the difficulties associated with attaching the specimen to an external loading source. Polycrystalline specimens containing cracks formed by indentation were associated with a microstructure independent average fracture toughness of 1.0 MPa√m. The strength of specimens containing micromachined blunt notches demonstrated a strong dependence on processing procedures and resulting surface roughness. Fractographic investigation suggests that this dependence is related to the size of processing-related flaws on the side surfaces of the films.

Author Information

Ballarini, R
Case Western Reserve University, Cleveland, Ohio
Kahn, H
Tayebi, N
Heuer, AH
Price: $25.00
Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Developed by Committee: E08
Pages: 37–51
DOI: 10.1520/STP10979S
ISBN-EB: 978-0-8031-5458-2
ISBN-13: 978-0-8031-2889-7