DISCUSSION

*Ph.B. van Asbroeck*¹—Irradiation experiments carried out at C.E.N./ S.C.K., Mol, Belgium, under higher fast fluences than those reported by A. L. Lowe, Jr., and C. J. Baroch show that 19-9DL is still less susceptible to elevated-temperature embrittlement than austenitic stainless steel.

19-9DL solution annealed 15 min at 1050 C and aged 1 h at 760 C, AISI 316 solution annealed 15 min at 1050 C, and Incoloy-800 annealed 15 min at 980 C in the form of tension plate specimens (0.5 mm thick) have been neutron irradiated at 60 C in BR2 up to a fast fluence of 2.65 n/cm^2 , E>0.1 MeV, 1.30 n/cm^2 , E>1 MeV, and a thermal fluence of 2.4 n/cm^2 . Total elongation at 700 C (Table 1 of the discussion) has been measured by postirradiation tension testing at a strain rate of 5×10^{-3} min⁻¹. The analysis of the table indicates a levelling of the total elongation decrease between a fast fluence of 1.2 and 1.9×10^{21} n/cm^2 , E>0.1 MeV Tension tests on specimens irradiated at a fast fluence greater than 10^{22} n/cm^2 are under way and will check this levelling.

Furthermore if the ratio of the total elongation before irradiation to the total elongation after irradiation is taken as a measure of the susceptibility to high-temperature embrittlement, statistical testing leads to the conclusion that this susceptibility is different for the three alloys at a 5 percent level of significance. The value of this susceptibility to high-temperature (700 C) embrittlement is about 2.6 for 19-9DL, 4.3 for AISI 316, and 9.0 for Incoloy-800.

Fast Fluence, E > 0.1 MeV, - n/cm^2	Total Elongation, $\%$		
	19-9 DL	AISI 316	Incoloy-800
) <i>.</i>	58.5, 63.5, 68.0	68.0, 70.0, 72.5	71.0, 72.5, 77.6
1.20×10^{21}	26.7, 28.6, 35.5	19.0, 19.1, 22.0	10.0, 11 4, 11.4
1.90	22.4	20.5	7.1
2.30	23.4	16.9	7.6
2.50	20.0, 24.8	15.3, 22.9	8.1, 9.1
2.65	19.6, 24.9, 26.3,	10.5, 11.9, 11.9,	7.2, 9.3, 10.2
	27.7	17.6	, ,

TABLE 1—Total elongation at 700 C (strain rate= 5×10^{-3} min⁻¹; irradiation temperature=60 C).

¹ Ingénieur civil, U.I.Lv., section head, C.E.N.-S.C.K., B-2400 Mol, Belgium.