
ELECTROCHEMICAL IMPEDANCE

Analysis and Interpretation

Scully/Silverman/Kendig editors

STP 1188 (1)

Electrochemical Impedance: Analysis and Interpretation

John R. Scully, David C. Silverman, and Martin W. Kendig, Editors

ASTM Publication Code Number (PCN): 04-011880-27

Library of Congress Cataloging-in-Publication Data

Electrochemical impedance: analysis and interpretation / John R. Scully,

David C. Silverman, and Martin W. Kendig, editors.

(STP; 1188)

"ASTM publication code number (PCN): 04-011880-27."

Includes bibliographical references and indexes.

ISBN 0-8031-1861-9

1. Corrosion and anti-corrosives. 2. Electric resistance—Data

processing. 3. Electrochemical analysis—Data processing.

I. Scully, John R., 1958- II. Silverman, David C., 1947-

III. Kendig, Martin W. IV. Series: ASTM special technical publication; 1188.

TA418.74.E43 1993 620.1'1223—dc20

92-42059

CIP

Copyright © 1993 AMERICAN SOCIETY FOR TESTING AND MATERIALS, Philadelphia, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the AMERICAN SOCIETY FOR TESTING AND MATERIALS for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$2.50 per copy, plus \$0.50 per page is paid directly to CCC, 27 Congress St., Salem, MA 01970; (508) 744-3350. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0-8031-1861-9-93 \$2.50 + .50.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution to time and effort on behalf of ASTM.

Foreword

This publication, Electrochemical Impedance: Analysis and Interpretation, contains papers presented at the symposium of the same name, held in San Diego, CA on 4–5 November 1991. The symposium was sponsored by ASTM Committee G-1 on Corrosion of Metals. John R. Scully, University of Virginia, Center for Electrochemical Science and Engineering, David C. Silverman, Monsanto, and Martin W. Kendig, Rockwell International Science Center, presided as symposium chairmen and are editors of the resulting publication.

Contents

Overview	1
Modeling and Corrosion Processes	
Impedance Spectra Calculated from Model Polarization Curves—U. BERTOCCI AND R. E. RICKER	9
Discussion	22
Specific Aspects of Impedance Measurements in Low Conductivity Media— S. CHECHIRLIAN, M. KEDDAM, AND H. TAKENOUTI	23
Analysis of EIS Data for Common Corrosion Processes—F. MANSFELD, H. SHIH, H. GREENE, AND C. H. TSAI	37
Analyzing Simulated Electrochemical Impedance Spectroscopy Results by the Systematic Permutation of Data Points—P. R. ROBERGE	54
The Effect of Parasitic Conduction Pathways on EIS Measurements in Low Conductivity Media—K. C. STEWART, D. G. KOLMAN, AND S. R. TAYLOR	73
The Characterization of the Coarsening of Dealloyed Layers by EIS and Its Correlation with Stress-Corrosion Cracking—R. G. KELLY, A. J. YOUNG, AND R. C. NEWMAN	94
Applications of Kramers-Kronig Transformations	
Application of the Kramers-Kronig Relations in Electrochemical Impedance Spectroscopy—P. AGARWAL, M. E. ORAZEM, AND L. H. GARCIA-RUBIO	115
Kramers-Kronig Transformation in Relation to the Interface Regulating Device— C. GABRIELLI, M. KEDDAM, AND H. TAKENOUTI	140
Validation of Experimental Data from High Impedance Systems Using the Kramers-Kronig Transforms—B. J. DOUGHERTY AND S. I. SMEDLEY	154
Corrosion and Inhibition	
The Impedance Response of Film-Covered Metals—S. TURGOOSE AND R. A. COTTIS	173
Corrosion Prediction from Circuit Models Application to Evaluation of Corrosion Inhibitors—D. C. SILVERMAN	192

Use of Electrochemical Noise in the Study of Inhibitor Systems: Part I—The Effect of Silicate Polymerization on the Inhibition of Aluminum—S. T. HIROZAWA AND D. E. TURCOTTE	205
The Influence of Corrosion Product Film Formation on the Corrosion of Copper- Nickel Alloys in Aqueous NaCl—H. HACK AND H. PICKERING	220
Discussion	236
Interpreting Electrochemical Impedance Spectra from Segmented Electrode Arrangements—A. N. ROTHWELL, J. L. DAWSON, D. A. EDEN, AND J. W. PALMER	237
Discussion Discussion	251
Corrosion of Aluminum	
Evolution of Electrochemical Impedance During Sealing of Porous Anodic Films on Aluminum—J. L. DAWSON, G. E. THOMPSON, AND M. B. H. AHMADUN	255
Discussion	275
Characterization of the Corrosion of Aluminum Thin Films Using Electrochemical Impedance Methods—J. R. SCULLY	276
Detection and Monitoring of Localized Corrosion by EIS —F. MANSFELD, Y. WANG, S. H. LIN, H. XIAO, AND H. SHIH	297
Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy for the Statistical Process Control of Aluminum Anodizing—P. R. ROBERGE, E. HALLIOP, AND S. YOUSRI	313
Equivalent Circuit Modeling of Aluminum/Polymer Laminates Using Electrochemical Impedance Spectroscopy—G. R. T. SCHUELLER AND S. R. TAYLOR	328
Discussion	343
Corrosion of Steel in Soil and Concrete	
Electrochemical Impedance of a Buried Large Structure—S. SUDO AND S. HARUYAMA	347
Calculation of Extended Counter Electrode Polarization Effects on the Electrochemical Impedance Response of Steel in Concrete—S. C. KRANC AND A. A. SAGÜÉS	365
Discussion	383

Electrochemical Impedance and Harmonic Analysis Measurements on Steel in Concrete—M. I. JAFAR, J. L. DAWSON, AND D. G. JOHN	384
Coatings on Metals	
Electrochemical Impedance of Coated Metal Undergoing Loss of Adhesion— M. W. KENDIG, S. JEANJAQUET, AND J. LUMSDEN	407
Analyzing and Interpreting Electrochemical Impedance Spectroscopy Data from Internally Coated Steel Aerosol Containers—W. S. TAIT, K. A. HANDRICH, S. W. TAIT, AND J. W. MARTIN	428
Study of Protection Mechanisms of Zinc-Rich Paints by Electrochemical Impedance Spectroscopy—S. FELIU, JR., R. BARAJAS, J. M. BASTIDAS, M. MORCILLO, AND S. FELIU	438
Evaluation of High-Performance Protective Coatings by Electrochemical Impedance and Chronoamperometry—R. D. GRANATA AND K. J. KOVALESKI	450
Discussion	462
Improved Coatings Testing and Evaluation Using Electrochemical Impedance Spectroscopy—P. KAMARCHIK	463
Author Index	475
Subject Index	477