Subject Index

A-B

Area ratio, 15
ASTM Committee D-18, 1
ASTM standards
C 403: 229
D 653: 166
D 2573: 1, 5, 8, 52, 106, 183, 321, 335, 341
D 4698: 1
Atterberg limits, 267
Autonomous Seafloor Strength Profiler, 354
Blast-furnace slag, 220

C

Cements, marine clay improved, 220 Centrifuge tests, 209 Clays (See also Marine sediments; Testing) anisotropy, 30-32, 82, 88, 166, 267 carbonate, 339 dynamic moduli, 193 elliptical failure criterion, 88 Gault, 212 geotechnical data, table, 76 liquidity index, 293 minerals, 220 model, physical, 209 overconsolidation, 33-38, 71, 306 plasticity, 13, 150, 293, 339 remolding, 166 sensitivity, 117, 166, 233 shear rate, 46, 117 shear strength, undrained (See Shear strength) shear stress distributions, 15 static moduli, 193 strain softening, 150 strength anisotropy, undrained, 30-32, 82, 88, 166, 267 strength relationships, vane and compressive, 32-36

stress, effective, 131
stresses, horizontal, 71
stresses, yield, 27, 71
Cone penetration tests
Autonomous Seafloor Strength Profiler,
354
during centrifuge flight, 209
comparison with other methods, 247,
293, 306, 339
relative preference for, 56
Constitutive equation, 131
Core tests, 354
Cylinder shear testing, 131

D

Deep mixing method, 220 Dilatometers, 247 Drilling, offshore, 46, 220, 318, 339 Dynamic moduli, 193

E-F

Elliptical failure criterion, 88 Failure, progressive, 150 Field vane testing (See also Testing) comparison with laboratory results, 233, 293, 306 comparison with other in-situ results, 247, 293, 306, 354 corrections, 242-243 design and experience with a commercial unit, 318, 339 friction errors, 104 future research and development recommendations, table, 7 installation methods, 104 instrumentation, 318 overview, 1 Fills, test, 267 Finite-element analysis, 150 Foundations, 277 Friction errors, 104

I-L

Insertion effects, 18-21, 54, 117 Lateral stress at rest, coefficient of, 339 Lime reaction capacity, 220 Liquidity index, 293

M

Marine sediments (See also Clays; Shear strength) anisotropy, 30-32, 82, 88, 166, 267 Bombay, 277 Hiroshima Bay, 220 James Bay, Quebec, 233 Mexico, Gulf of, 166, 293 Mississippi Fan, 166 Osaka Bay, 131, 220 Pacific, North, 166, 361 Rhode Island Sound, 362 Rio de Janeiro soft, 104 Santa Barbara Channel, 306 sensitivity, 117, 166 Sepetiba, Brazil, 267 Tokyo Bay, 220 Minerals, clay, 220 Mixing, deep, 220

O

Ocean-bottom testing (See Testing; Marine sediments)
Ocean soil (See Clays; Marine sediments)
Offshore drilling, 46, 220, 318, 339
Overburden, 306
Overconsolidation, 33–38, 71, 306

P

Penetrometers, cone
Autonomous Seafloor Strength Profiler,
354
centrifuge flight, use during, 209
comparison with other methods, 247,
293, 306, 339
relative preference for, 56
Perimeter ratio, 18
Piezocone tests, 247, 293
Plasticity, 13, 150, 293, 339
Portland cement, 220
Preconsolidation pressure, 306.
Pressuremeters, 247
Progressive failure, 150

R

Rest period, 13, 15 Rod-soil friction, 104 Rotation rates, 13, 53, 117

S

Screw-plate apparatus, 247 Sensitivity of clays, 117, 166, 233 SHANSEP (stress history and normalized soil engineering properties) correlation with other methods, 196, 293, 306 definition, 33 usage, 56 Shear rate, 46, 117 Shear strength (See also Testing) cement, marine clay improved, 220 undrained clay anisotropy, 30-32, 82, 88, 166, 267 Autonomous Seafloor Strength Profiler, 354 during centrifuge flight, 209 low strain, 193 measurement factors, 13, 117 micromorphological aspects, 182 normalized, 293 offshore, 46 residual/remolded, 166 Skempton relationship, 348 stresses, in-situ and yield, 71, 267 vane and field strengths, correlation of, 82-85 Shear stresses clays distributions in, 15 effective, 131 horizontal, 71 yield, 27, 71 vanes, rectangular, distributions in, table, 90 Shear testing (See Testing) Silt (See Clays; Marine sediments) Site investigation, 293 Slag, blast furnace, 220 Sliding block analysis method, 277 Soil stabilization, 220 Soils (See also Clays) carbonate, 339 instrumentation (See Test apparatus; Vane types) mechanics, 13, 150

progressive failure, 150	in-situ methods rated, table, 248
properties, 46, 306	insertion effects, 18-21, 54, 117
Stability analysis (See Testing)	installation methods, 104
Stabilization, soil, 220	laboratory (See also Triaxial testing)
Standards	ASTM D 4698: 1
ASTM C 403: 229	effective stress, 131
ASTM D 653: 166	mircomorphological aspects, 182
ASTM D 2573: 1, 5, 8, 52, 106, 183,	land
321, 335, 341	ASTM D 2573: 1, 5, 8, 52, 106, 321,
ASTM D 4698: 1	341
national standards, comparison of, table,	miniature vane, 209, 293, 306
319	offshore, 46, 220, 318, 339
offshore application of onshore test	overview, 1
standards, 318	penetration
standard field vane test, 14	cone (See Cone penetration tests)
Static moduli, 193	ASTM C 403: 229
Strain-rate effects, 13, 53, 117	piezocone, 247, 293
Strain softening, 150	questionnaire, 46
Stresses	remolding, 166
effective, 131	reviews, 13, 46
horizontal, 71	SHANSEP (stress history and
lateral, at rest, coefficient of, 339	normalized soil engineering
yield, 27, 71	properties), 33, 56, 196, 293, 306
J1010, 27, 71	shear, cylinder, 131
T	standardization
•	ASTM D 2573: 1, 5, 8, 52, 106, 183,
Test apparatus (See also Vane types)	321, 335, 341
Autonomous Seafloor Strength Profiler,	ASTM D 4698: 1
354	national standards, comparison of,
commercial in-situ vane, 318	table, 319
cylinder shear, 131	offshore application of onshore test
deep mixing cement, 220	standards, 318
dilatometers, 247	recommendations, table, 6
field vane, 104	standard field vane test, 14
offshore vane, 46	Torvane, 339
penetrometers, cone (See Penetrometers,	triaxial (See Triaxial testing)
cone)	vane and field strengths, correlation, 82-
pressuremeters, 247	85, 288
screw-plate, 247	vane results compared with other in-situ
Test fills, 267	results, 247
Testing (See also Shear strength)	Torvane, 339
calibration, 104	Triaxial testing
cement, marine clay improved, 220	on anisotropically reconsolidated
centrifuge, 209	specimens, 233
core, 354	correlation with other methods, 293,
correlation factors, 71, 104	306, 339
design criteria, 46	with cyclic loading, 193
field and laboratory tests, comparisons,	reliability of, 277
	Tenaonity 01, 277
117, 233, 293, 306 friction errors, 104	\mathbf{v}
future research and development	Y
recommendations, table, 7	Vane borer, 104, 277
history, 46, 182	
in-situ and core, comparison of results, 354	Vane insertion effects, 18–21, 54, 117
in-situ and core, companison of results, 334	Vane rotation rates, 13, 53, 117

Vane strength, 117
Vane types
diamond shaped, 88
Dolphin, 51
friction eliminator, 106
Fugro, 50, 318, 339
McClelland, 50
miniature, 209, 293, 306
rectangular, 88

shape effects, 88, 117 standard, 14 triaxial, 193, 280, 293, 306, 339 vane borer, 104, 277

Y

Yield stresses, 27, 71