
Fracture Mechanics

Twenty-Third Symposium

Ravinder Chona, editor

STP 1189

Fracture Mechanics: Twenty-Third Symposium

Ravinder Chona, editor

ASTM Publication Code Number (PCN) 04-011890-30

ASTM Publication Code Number (PCN) 04-011890-30

ISBN: 0-8031-1867-8 ISSN: 1040-3094

Copyright © 1993 AMERICAN SOCIETY FOR TESTING AND MATERIALS, Philadelphia, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the AMERICAN SOCIETY FOR TESTING AND MATERIALS for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$2.50 per copy, plus \$0.50 per page is paid directly to CCC, 27 Congress St., Salem, MA 01970; (508) 744-3350. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0-8031-1867-8/93 \$2.50 + .50.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution to time and effort on behalf of ASTM.

Printed in Baltimore, MD September 1993

Foreword

The Twenty-Third National Symposium on Fracture Mechanics was held on 18–20 June 1991 in College Station, Texas. ASTM Committee E24 on Fracture Testing was the sponsor. Ravinder Chona, Texas A&M University, presided as symposium chairman and is the editor of this publication.

Contents

Overview	1
Jerry L. Swedlow Memorial Lecture	
Structural Problems in Search of Fracture Mechanics Solutions—J. M. BARSOM	5
Elastic-Plastic Fracture Mechanics—Analyses and Constraint Issues	
Crack Initiation Under Generalized Plane-Strain Conditions—D. K. M. SHUM AND J. G. MERKLE	37
Experimental Relationship Between Equivalent Plastic Strain and Constraint for Crack Initiation—W. G. REUTER, W. R. LLOYD, R. L. WILLIAMSON, J. A. SMITH, AND J. S. EPSTEIN	55
A Comparison of Weibull and β_{lc} Analyses of Transition Range Data— D. E. McCabe	80
Near-Crack-Tip Transverse Strain Effects Estimated with a Large Strain Hollow Cylinder Analogy—J. G. MERKLE	95
The Conditions at Ductile Fracture in Tension Tests—R. J. DEXTER AND S. ROY	115
Developing J-R Curves Without Displacement Measurement Using Normalization—K. LEE AND J. D. LANDES	133
Evaluation of Dynamic Fracture Toughness Using the Normalization Method— R. HERRERA, G. CARCAGNO, AND L. A. DE VEDIA	168
Asymptotic Analysis of Steady-State Crack Extension of Combined Modes I and III in Elastic-Plastic Materials with Linear Hardening—H. YUAN AND A. CORNEC	185
An Asymptotic Analysis of Static and Dynamic Crack Extension Along a Ductile Bimaterial Interface/Anti-Plane Case—H. YUAN AND KH. SCHWALBE	208

ELASTIC-PLASTIC FRACTURE MECHANICS—APPLICATIONS

An Application Methodology for Ductile Fracture Mechanics—J. D. LANDES, Z. ZHOU, AND K. H. BROWN	229
Growth of Surface Cracks During Large Elastic-Plastic Loading Cycles— R. C. McClung, S. J. Hudak, Jr., M. L. Bartlett, and J. H. Fitzgerald	265
Level-3 Crack-Tip Opening Displacement (CTOD) Assessment of Welded Wide Plates in Bending—Effect of Overmarching Weld Metal—s. BERGE, O. I. EIDE, AND M. FUJIKUBO	284
Limit Pressure Analysis of a Cylindrical Vessel with Longitudinal Crack— X. CHEN, P. ALBRECHT, AND J. JOYCE	310
A Deep Part-Through All-Around Circumferential Crack in a Cylindrical Vessel Subject to Combined Thermal and Pressure Load—L. CHEN, P. C. PARIS, AND H. TADA	330
Study of a Crack-Tip Region Under Small-Scale Yielding Conditions— C. A. SCIAMMARELLA, A. ALBERTAZZI, JR., AND J. MOURIKES	344
Fracture Properties of Specially Heat-Treated ASTM A508 Class 2 Pressure Vessel Steel—D. J. ALEXANDER AND R. D. CHEVERTON	365
Linear-Elastic Fracture Mechanics—Analyses	
Cracked Strip Problem Subjected to a Nonsymmetric Transverse Loading by a Stamp—o. s. Yahşi and Y. Demir	383
Stress Intensity Factor Solutions for Partial Elliptical Surface Cracks in Cylindrical Shafts—KL. CHEN, AY. KUO, AND S. SHVARTS	396
Analysis of Circumferential Cracks in Circular Cylinders Using the Weight-Function Method—S. R. METTU AND R. G. FORMAN	417
LINEAR-ELASTIC FRACTURE MECHANICS—APPLICATIONS	
Environmentally Controlled Fracture of an Overstrained A723 Steel Thick-Wall Cylinder—J. H. UNDERWOOD, V. J. OLMSTEAD, J. C. ASKEW, A. A. KAPUSTA, AND G. A. YOUNG	443
Fatigue Lifetimes for Pressurized, Eroded, Cracked, Autofrettaged Thick Cylinders—A. P. PARKER, R. C. A. PLANT, AND A. A. BECKER	461
An Evaluation of Fracture Mechanics Properties of Various Aerospace Materials—J. A. HENKENER, V. B. LAWRENCE, AND R. G. FORMAN	474

Leak-Before-Break and Fatigue Crack Growth Analysis of All-Steel On-Board Natural Gas Cylinders—G. S. BHUYAN	498
Fatigue and Nondestructive Evaluation	
Intergranular Delamination and the Role of Artificial Aging Conditions on the Fracture of an Unrecrystallized Aluminum-Lithium-Zirconium (Al-Li-Zr) Alloy—P. C. McKEIGHAN, B. M. HILLBERRY, AND T. H. SANDERS, JR.	515
Development of Fatigue Life Prediction Program for Multiple Surface Cracks—YJ. KIM, YS. CHOY, AND JH. LEE	536
Fatigue Crack Growth Behavior of Titanium Aluminide Ti-25Al-25Nb— S. J. BALSONE, D. C. MAXWELL, AND T. F. BRODERICK	551
Fatigue Crack Growth Rate Measurements in Aluminum Alloy Forgings: Effects of Residual Stress and Grain Flow—R. W. BUSH, R. J. BUCCI, P. E. MAGNUSEN, AND G. W. KUHLMAN	568
Fatigue Crack Growth Analysis of Structures Exposed to Fluids with Oscillating Temperature Distributions—S. CHATTOPADHYAY	590
Development of a Fatigue Crack Growth Rate Specimen Suitable for a Multiple Specimen Test Configeration—F. R. DESHAYES AND W. H. HARTT	598
Ultrasonic Characterization of Fatigue Crack Closure—R. B. THOMPSON, O. BUCK, AND D. K. REHBEIN	619
Composites and Nonmetals	
Debonding Force of a Single Fiber from a Composite Body—ss. Leu and J. L. HILL	635
A Finite-Element Analysis of Nonlinear Behavior of the End-Loaded Split Laminate Specimen—C. R. CORLETO AND H. A. HOGAN	649
Investigating the Near-Tip Fracture Behavior and Damage Characteristics in a Particulate Composite Material—CT. LIU	668
Modeling the Progressive Failure of Laminated Composites with Continuum Damage Mechanics—D. C. LO, D. H. ALLEN, AND C. E. HARRIS	680
Effect of Fiber-Matrix Debonding on Notched Strength of Titanium Metal-Matrix Composites—C. A. BIGELOW AND W. S. JOHNSON	696
Evolution of Notch-Tip Damage in Metal-Matrix Composites During Static Loading—J. G. BAKUCKAS, JR., J. AWERBUCH, TM. TAN, AND A. C. W. LAU	713

Experimental Verification of a New Two-Parameter Fracture Model—	
D. E. RICHARDSON AND J. G. GOREE	738
Translaminate Fracture of Notched Graphite/Epoxy Laminates—C. E. HARRIS AND D. H. MORRIS	751
Near-Tip Behavior of Particulate Composite Material Containing Cracks at Ambient and Elevated Temperatures—C. w. SMITH, L. WANG, H. MOUILLE, AND CT. LIU	775
Static Fatigue in Dilatant-Zone-Toughened Ceramics—K. DUAN, B. COTTERELL, AND YW. MAI	788
Fracture Energy Dissipation Mechanism of Concrete—z. guo, jh. yon, n. m. hawkins, and a. s. kobayashi	797
Probabilistic and Dynamic Issues	
Probabilistic Fracture Mechanics Evaluation of Local Brittle Zones in HSLA-80 Steel Weldments—L. E. EISELSTEIN, D. O. HARRIS, T. M. SCOONOVER, AND C. A. RAU	809
Rapid Crack Propagation in Polyethylene Pipes: The Role of Charpy and Dynamic Fracture Testing—P. S. LEEVERS, P. YAYLA, AND M. A. WHEEL	826
Effects of Sample Size and Loading Rate on the Transition Behavior of a Ductile Iron (DI) Alloy—R. SALZBRENNER AND T. B. CRENSHAW	840
Author Index	859
Subject Index	861