Author Index

A

Alevantis, L. E., 257 Allard, P. F., 73

В

Bayer, Charlene W., 234 Black, Marilyn S., 234 Brenner, F. Cecil, 199 Burge, Harriet, A., 35, 111

C

Cohen, M. A., 129 Colome, Steven D., 203

D

Darack, F., 178 Dudney, C. S., 129

F

Fortmann, Roy C., 287

G

Girman, John R., 244 Gorman, Richard W., 63 Greenberg, A., 178 Grot, Richard A., 35

H

Harkov, R., 178 Harper, J. P., 5, 129 Hawthorne, A. R., 129 Hodgson, Alfred T., 244

J

Jaakkola, Jouni, 51 Jones, Neville, 266 K

Kelty, S. P., 9 Kollander, Mel, 199 Koontz, Michael D., 148

L

Lawrance, Graham V., 266 Lebowitz, Michael D., 203 Levin, Hall, 99 Lewis, Robert G., 219 Lioy, P. J., 178, 203

M

Morey, Philip R., 80

N

Nagda, Niren L., 5, 148, 287

P

Persily, Andrew K., 35, 111 Phillips, T. J., 99 Psota-Kelty, L. A., 9

O

Quackenboss, James J., 203

R

Rask, Dean R., 80 Rector, Harry E., 287

S

Seppänen, Olli, 51 Shields, H. C., 9 Sinclair, J. D., 9 Soczek, Mary Lou, 203 Spengler, J. D., 129 T

Traynor, Gregory W., 166 Turner, William A., 35, 111 Tyndall, R. L., 129

V

Vo-Dinh, T., 129

W

Waldman, J., 178 Wallace, Lance, 199, 219 Wallingford, Kenneth M., 63 Waters, John R., 266 Weschler, C. J., 9 White, Jim H., 185 Whitmore, Roy, 199 Woods, James E., 80

Subject Index

A	soils, 182
	study area selection, 180
Abbey School Sports Hall, 279	study design, 182–183
Acetone, chromatographic scan, 239	water, 181
Acute respiratory health monitoring, 134-	Bioaerosols, 48–49, 116, 125, 129, 141–142
135	data collection, 119–120
Aerosol, 9	monitoring, 231
Air	Breakthrough volume
distribution system, 54	defined, 246
movement pathways, ventilation effi-	low boiling compounds, 247
ciency, 114–115	British Gas Maintenance Depot, 283
sampling rates, 12	Building illness syndrome. See Sick building
Airborne particles, 9	syndrome
Air-conditioning system. See HVAC	Buildings, 2–3, 35–49
Air exchange, 287	air distribution system, 36–38
parameters, 152	air handling units, 36
Air exchange rate, 121, 185	air quality and ventilation rates, 58-59
factors, 150	bake out, 107–108
house, 173	carbon monoxide, levels, 40
measurement, 137	characteristics, 121–122
tracer gas decay method, 288	closeout procedure, 107–109
versus temperature difference, 45–46	contractors, 76
Airflows, interzonal, 288, 291–294	construction closeout procedure, 99
Air handling units, 36	current investigation, 42–49
Airtightness, 185	bioaerosols, 48–49
Air-to-air heat exchanger, 148–149, 151, 159, 161	indoor pollutant measurements, 47–48
ASHRAE Dust Spot rating, 13, 20, 26	inspection, 42–43
ASHRAE Standard 55-1981, 72, 87–88	system airflows and ventilation effec-
ASHRAE Standard 62-1981, 72, 87-88	tiveness, 46–47
ASTM E 741-83, 44, 123, 257–258, 288	tracer gas decay tests, 43–46
Atomic absorption analysis, 29–30	description, 36–38
Aureobasidium, 95-96	design professionals, 76
Turcobustuum, 75 70	draft, 59, 61
В	envelope, 204–205
Danner sharmstographic seen 229 220	factors affecting air quality studies, 51–61
Benzene, chromatographic scan, 238–239	health and temperature 58
Benzo (a) pyrene, 178–184	health and temperature, 58
activity questionnaire, 182	history of complaints, 35 indoor climate, 56–57
food, 182	measurements, 55–56
home selection, 180	investigation, 73, 203, 209
indoor/outdoor air sampling, 180	factors influencing, 74
methods validation, 180–182	gas also NIOSH investigations

Buildings—Continued	Chemiluminescence, NO ₂ monitoring, 222
maintenance problems, 43	Coarse particles, 9
major findings, 38–39	indoor and outdoor concentrations, 21-
materials contamination, 70	22
mechanical system, contaminant source, 118	Combustion-related sources, 115, 166–177 205
mechanisms for introduction of contami-	broad, low-intensity field studies, 171
nants, 77–78	cross-sectional studies, 171, 177
microbiological contaminants, 41	emission rates, source strengths, and vent
organizational interests, 75–77	ing factors, 173–174
owners and managers, 76	factors affecting usage patterns, 169–170
past investigations, 38–41	measurement techniques and protocols
performance, 35	171–175
pre-occupancy evaluations, 107	modeling, 168–171
project and problem definition, 73–79	reactivity rates and penetration factors
recommendations, 40	174–175
relief air system, 42–43	samplers, 172–173
sources of difficulty, 74	short-term concentrations, 175
statistical methods, 55–56	source strength, 169, 171
study design, 53–55	source usage parameters, 173
technical causes of problems, 73	types, 167–168
technical systems, 58–60	venting factor, 169
time variation of air contamination, 78–79	Commercial buildings. See Buildings
single cell, 266	Consultation, 80, 82–83
multipoint sampling, 267	flowchart, 84
see also Diagnostics; specific buildings or	Consumer products, 234, 237
types	Contaminant, 35, 99
	assessment, 47–48, 55, 115
\mathbf{c}	concentration, 185, 196 attenuation of differences, 196
Calcium, 9	change in, 251
California state office buildings, 99–109	factors affecting, 169–170
air sampling data, 101	spatial average, 168–169
Bateson building, Sacramento, 100-102	evaluations, 111
California Energy Commission Building,	exposure-response relationship, 205
Sacramento, 104–105	mechanisms for introduction, 77–78
design flaws, 106	sources, 115–116
recommendations, 107	outside, 116–117
State Office Building, Long Beach, 102-	time variation, 78–79
104	source strength. See Source strength
Canister collection systems, VOC, 266–227	storage and release, 188
Carbon dioxide, 63	Control strategies, 90
concentration, 48, 67, 88, 113–114	Cooling towers, contaminant source, 117
monitoring, 262–263	Courtaulds Engineering Workshop, 280
Carbon monoxide, 219	Courtaulds Pattern Making Shop, 281
concentration, 40, 48 GEOMET test houses, 155	Coventry Airport, 282
electrochemical personal exposure moni-	D.
tors, 221	D
monitoring, 172, 221	Data
Carrier gas flow rate, electron capture de-	analysis, 214
tector, 271–272	evaluation, 213-215
Chemical reactivity, 188	flow and tracking, 213
equivalent volumetric flow rate, 192	quality, 18–19, 179

Data collection, 19, 111–125 air movement pathways, 114–115 assessing ventilation rates, 113–114	commercial and office buildings, 59, 61 Dust, monitoring, 231–232
bioaerosols, 119–120	${f E}$
building height, 118 building mechanical system, contaminant source, 118	Electrochemical CO personal exposure mon-
computer-controlled, 264	itors, 221 Electron capture detector
contaminant assessment, 115	amplifier, 268–269
history of occupant complaints and build-	block diagram, 259–261
ing operation, 112-113	carrier gas flow rate, 271–272
HVAC, preventive maintenance, 118	column dimensions, 269, 271
indoor contaminant sources, 115–116	current, 269-270
mechanical systems, 114	performance, 271
outside contaminant sources, 116–117	sample loop volume, 271
tracer gas decay measurement, 120–124	sampling and calibration valves, 259
Deposition velocity, 9	six-channel design, 271, 273-274
Design, 99	system optimization, 269
definition, 1	El
flaws, 106	ventilation rates, 259–261
original intent, 113	Emission rate, 234
Diagnostics consultation, 82–83	combustion-related sources, 173–174
data acquisition, 84	Energy conservation, 9, 99
determining appropriate instrumentation,	Energy consumption, 148, 287
82	factors, 150
hypotheses, 85	parameters, 152
interpreting results of mesurements, 83	Engineering analysis, 80 Environmental chamber, 234
knowing what to measure, 82	Environmental chamber/gas chromato-
predicting building performance, 83	graphic instrumental system, 235–236
protocols, 81–83	Environmental inventories, 203
qualitative, 82, 85–91	Environmental Inventory Questionnaire. See
chemical and physical agents, 86-88	Questionnaires
control strategy analysis, 90	Environmental parameters, 152
flowchart, 86	Epidemiology, 206-207
load analysis, 90	Evaluation criteria, 68
performance criteria, 85–89	Exfiltration, 121
problem and complaint characteriza-	Exhaust systems, localized, contaminant
tion, 89	source, 117
report, 90–91	Exposure, 185
simulation, 90–91	factors, current levels of knowledge, 206
system boundaries, 89	multiple vector assessment, 179
quantitative, 82, 91–97	
analysis, interpretation, and report, 95–97	F
flowchart, 92	Fibers, 116
human resource questionnaire, 93–95	Field tests, 185
informed consent notice, 94, 96 objective measures, 93	protocol, 194–195
quality assurance and control, 93	Filters, preparation and weighing, 11
site selection, 91–93	Filtration, 9
subjective measures, 93–95	household, 187 Fine particles, 9
Diffusive sampling, VOC, 29	indoor and outdoor concentrations, 21–22
Draft, 51	sources, 26
	55 54 50 50

Food, benzo(a)pyrene, 182	variable air volume multizone, 99
Formaldehyde, 129, 219	Hypersensitivity pneumonitis, 49, 69
concentrations, 103, 164	
measurements, 138–140	I
monitoring, 224–225	•
regression model, 164	Ill buildings, 51
	Indoor climate
C	attributes, 94
G	commercial and office buildings, 56-57
Gas analyzer	identification, 204
block diagram, 273	measurements, 55–56
calibration, 271, 275	Indoor concentration, 21
Gas chromatography, 219, 269, 289	average, 20
ventilation rates, 258	inorganic gases, 24–25, 27
Gaseous-pollutant concentration, 168	ionic species, 22, 26
Gaseous sample introduction system, 235-	nonpolar organic compounds, 24, 27
237	trace elements, 22–23, 27
GEOMET test houses, 148–165, 289	VOC, 22, 24–25, 27
closed-wall construction, 152	Infiltration, 81, 121, 148, 266, 287
critique and recommendations, 161-162	instrumentation, 257
data analysis and interpretation, 157–161	measurement, 257
data flow and use, 157	prediction model, 191
experimental design, 149-151	rate, 279–283, 293
floor plans, 153, 290	seasonal frequency distribution, 158–159
house model, 152–153	whole building, 282–283
models, 158	Informed consent notice, 94, 96
objectives, 148	Infra-red gas analysers, 267
occupancy simulations, 151	Inhaled particle monitors, 223
post-retrofit monitoring, 149	Inorganic gases, 9
retrofit effect, 158–159	indoor and outdoor concentrations, 24–25,
semicontinuous measurements, 156	27
Governmental agencies, 77	Inspection, office building, 42–43
	Instrumentation, 4, 166, 219–232
Н	bioaerosol monitoring, 231
201.201	CO monitoring, 221
Halocarbon tracers, 291–294	CO_2 monitoring, 262–263
Harvard Six-Cities Study, 130	failures, 16
Heating, See HVAC	formaldehyde monitoring, 224–225
Hot water heating system, 54	house dust monitoring, 231–232
Human resource questionnaire, 93–95	integration, survey studies, 212–213
Humidity, 63, 68	monitor development, 220
control, contaminant source, 118	NO ₂ monitoring, 221–223
HVAC, 9, 51, 63, 111	PAH monitoring, 228
boundaries, 89–90	pesticides and related SVOCs, 227–228
capacities, 90	positioning, 18
evaluation, 65–68, 100	radon monitoring, 230–231
malfunctions, 102	respirable particles, 223–224 selection, 17–18, 82
mechanical systems, 114	
operation	surveys, 211–213 survey studies, 200
changes, 32 indoor air effect, 13	ventilation, 257
	ventilation rates, 262–264
procedure implementation, 15	VOC monitoring, 225–227
parameters, 16–17	see also specific devices
status, 21	see also specific devices

Integrative passive sampling devices, 221–223 Interest groups, 75–77 Interzone flows, 279–283 Ionic compounds, 9 Ionic species, indoor and outdoor concentrations, 22, 26

K

Kerosene heaters, 143-144 Kingston-Harriman, Tennessee, multipollutant study, 129

L

Legionella, 141–142 Loading docks, contaminant source, 117 Long-term exposure prediction, 185-197 analysis methodology, 193–194 concentrations, 196 equivalent ventilation, 196 factors affecting modeling, 186–187 field testing protocol, 194–195 future work, 197 hourly average concentration, 195 model development, 188 parametric forms, 189–191 ventilation models, 191–193 Wadden and Scheff single-sell model, 189 removal mechanisms, 187-188 sources, 195-196

M

Mass balance model, 9, 19–20, 28–30, 158, 166, 244 systematic identification, 204 two-zone case, 291–292 VOC, 251, 253 Mass spectrometry, 219 Material suppliers, 76 Measurement methods, 219 Methodology, 4, 73 Methods validation, 178 multisorbent sampling technique, 246-248 Methylene chloride, chromatographic scan, 239 Microbiological agents, 88–89 Microbiological contamination, 41, 70–71 Microbiology, 111 Microenvironmental survey, 178, 182 Microorganisms, 129 Mixing factor, 185, 191 calculation, 194-195

Modeling, 148, 166, 185 combustion-related sources, 168-171 conceptual, 204 GEOMET test houses, 158 long-term exposure prediction, factors affecting, 186-187 see also Mass-balance model Monitoring, 73 Multiple exposures vector assessment, 179 Multipollutant study, 129–147 acute respiratory health monitoring, 134– air exchange rate, measurement, 137 bioaerosols, 141–142 core air quality monitoring, 135–137 energy use and weatherization characterization, 142–145 formaldehyde, measurements, 138–140 group classification code, 131 Harvard Six-Cities Study, 130 house construction and retrofit, 154 kerosene heater, 143-144 monitoring strategy, 154–156 nitrogen dioxide, monitoring, 135–136 PAHs, monitoring, 139–141 parameters, 152, 162 phases, 153-154 post-study evaluation survey, 145-146 protocols, 133-134, 154-156 radon, measurements, 137-139 respirable particles, monitoring, 136-137 study design, 130-133 supplemental air quality monitoring, 137water vapor, monitoring, 136-138

weekly initial setups, 132

Multisorbent sampling technique, 244–255 application, 248–255 laboratory and field evaluation, 246 materials and methods, 245-246 method validation, 246–248

National Ambient Air Quality Standards, 87– 88, 198 NIOSH investigations, 41 building materials contamination, 70 by building type, 69–70 common health complaints, 70 inadequate ventilation, 71–72 indoor air quality questionnaire, 66–67 inside contamination, 71 methodology, 64-69

NIOSH investigations—Continued	sampling, 199-200
additional site assessments, 68-69	statistical, 199
background assessments, 64-65	Passive badges, 219
evaluation criteria, 68	Passive bubbler monitor, 224
initial site assessment, 65–68	Passive sampling, 19, 133
microbiological contamination, 70–71	formaldehyde, 224-225
outside contamination, 71	NO_2 , 221–223
by problem type, 70–71	VOCs, 17, 226–227
by year, 69	PCP, levels, 103, 106
Nitrogen dioxide, 129, 219	Penetration factor, 175
monitoring, 135–136, 221–223	Perfluorocarbon tracers, 288–289, 294–296
Nitrous oxide, as tracer gas, 266	Performance criteria, 80, 85–89
Non-dispersive infrared spectroscopic detec-	Personal exposure monitors
tion, 221	CO, 221
Non-Occupational Pesticides Exposure	respirable particles, 223–224
Study, 227–228	Personal interviews, 65
Nonpolar organic compounds, indoor and	Personal monitors, 219
outdoor concentrations, 24, 27	Pesticides, 219
outdoor concentrations, 24, 27	monitoring, 227–228
	Phillipsburg, New Jersey, 180–181
0	Pneumonitis, hypersensitivity, 49, 69
011 //	Polyaromatic hydrocarbons, 219
Objective measures, 93	Polynuclear aromatic hydrocarbons, 129
Odor recognition thresholds, 87, 98	denuder-based samplers, 229–230
Office buildings. See Buildings	monitoring, 139–141, 228–230
Operating room, model for contaminant bal-	sources, 228
ance, 91	Polyurethane foam, 219, 227–228
Optical particle counters, 31–32	adsorbent cartridge, PAH monitoring, 228-
Organic chemicals, 116	229
Organizational interests, 75–77	Power availability, sampling equipment, 16
Outdoor concentrations, 21, 71	Prediction, 185
inorganic gases, 24–25, 27	Pre-occupancy evaluations, 107
ionic species, 22, 26	Probability distributions, 184
nonpolar organic compounds, 24, 27	Professional services, 76–77
trace elements, 22–23, 27	Protocol, 73, 80-83, 99
VOC, 22, 24–25, 27	combustion-related sources, 171-175
Ozone, 115	definition, 1
	field tests, 194-195
P	long-term exposure prediction, 194-195
-	multipollutant study, 133-134, 154-156
Palmes tube, 222	sampling, 199–200
Parametric forms, 189–191	statistical, 199
Parametrics, 185	telephone office buildings, 16-19
Parking lots, contaminant source, 117	Proton-induced X-ray emission, 27, 30–31
Particles	•
fractionating, 29	0
optical counters, 31–32	¥
source, 115	Quality
Particulate organics, 9	assurance, 93
Particulate samples, characteristics, 12	control, 93
Pasıla Office Center, 52-53	Questionnaires, 66-67, 203-210
air distribution system 54	administration issues, 210-211
hot water heating system, 54	assessment, 211
indoor climate measurements, 55-56	comfort and psycho-social considerations
protocols	209

design, 210-211	adjusted summation score, 58–60
development, 209-210	correlation with room temperature, 61
effectiveness, 206	passive smoking and, 61
logic of conceptualization, 210	Simulation, 90–91
necessary information, 207–209	Single-cell model, 187, 189
reliability and validity, 207	Site assessment, 65–69
significant questions, 207–209	Smoking
standard, 209–210	environmental smoke, 208
survey role, 206–207	particle source, 115
techniques of operationalization, 210	passive, SBS symptoms and, 61
teeninques of operationalization, 210	Soils, benzo(a)pyrene, 182
D	Sorbents, 219
R	
Radon, 116-117, 129, 219	Sorbent sampler, 244 Sorbent tube samplers, VOC, 246
concentrations, 48	Sources, 185
measurements, 137–139	
	inventories, 107
monitoring, 230–231 Reactivity, 185	Source strength, 169, 185, 244
	apparent specific, 251–253
Reactivity rate, 174	combustion-related sources, 171–174
Regression model, formaldehyde, 164	parametric response to step change, 190
Relief air system, 42–43	VOC, 249–250, 254
Removal mechanisms, 205	Space heater
Residential buildings, 3–4	source strengths, 171
field studies, 129	usage, 208
Respirable particles, 129	Stack effect parameters, 192
monitoring, 136–137, 223–224	Standardization, 203
sampling, 172	State Office Building, Long Beach, 102–104
Retrofit, 148	Statistical protocols, 199
effect, 158–159	Stuffy offices, 51
monitoring after, 149	Subjective measures, 93–95
procedure, 154	Sulfate, 9
Roadways, contaminant source, 117	Sulfur hexafluoride
Room temperature, 51, 63, 68	calibration curve, 262–263
distribution, 56–57	concentrations, 155–156
draft sensation and, 61	decay method, 293
health and, 58	electron capture detector, 259–261, 268
performance criteria, 87–88	peaks
	height and base line, 269–270, 272
S	various concentrations, 259, 261
	as tracer gas, 257–264, 266, 289
Sampling	tygon tubing, 262
combustion-related sources, 172–173	Surface sampling, 11–12
periods, 18	Survey studies, 198–201, 203
program, California state office buildings,	design considerations, 199
103	evaluation, 213–215
protocols, 199–200	identification of factors, 203–207
site selection, 91–93	integration of instruments, 212–213
sufficient material, 17	issues, 200–201
Scandium-titride source, 259	measurement methods and instruments,
Semivolatile organic chemicals, monitoring,	200
227–228	microenvironmental, 178, 182
Sick building syndrome, 51, 219	monitoring instrument selection, 211–213
Aureobasidium, 95-96	post-study evaluation, 145–146
SBS-score, 55–57	recommendations, 201
symptoms, 51-52, 69-70, 244, 246	role of questionnaires, 206-207

Tight office building syndrome, 51

Survey studies—Continued	Toluene, chromatographic scan, 239
sampling protocols, 199–200	Total exposure assessment methodology
statistical protocols, 199	study, 198
walk-through, 65	Total human environmental exposure study,
Suspended particles, indoor and outdoor	178
concentrations, 21–22	Trace contaminants, exposure vectors, 179
T	Trace elements, 9
T	indoor and outdoor concentrations, 22–23, 27
Telephone office buildings, 9-33	Tracer gas decay method, 43-46, 111, 114,
air sampling rates, 12	120–124, 266–285
data collection and management proce-	air exchange
dures, 19	evaluation, 121–124
design variables affecting accuracy, 13	rates, 45-46, 288
goal of study, 10, 28	airflows, 46-47, 124
implementation and protocols	air sampling, 44-45
adequate samples, 17	automated measurement system, 44
data quality assurance, 18–19	block diagram, 274
HVAC parameters, 16–17	building characteristics, 121-122
instrument failure, 16	calibration, 271, 275–276
instrument positioning, 18	constant concentration, 287
instrument selection, 17–18	data analysis, 277–278
power availability, 16	effective volume, 123–124
procedure development, 14	future developments, 285
procedure implementation, 14–16	halocarbons, 291
sampling periods, 18	infiltration rates, 279–283
unusual activities at sites, 17 weather effects, 16	injection system 123, 277
	constant injection, 287, 289
indoor and outdoor concentrations	instrumentation, 122–123
fine, coarse and total suspended parti- cles, 21	interzone flows, 279–283
inorganic gases, 24–25, 27	multiple, 287–296
ionic species, 22, 26	calculations, 291–292
nonpolar organic compounds, 24, 27	interzonal airflows, 288, 291–294 results, 292–296
trace elements, 22–23, 27	multipoint, 267
VOC, 22, 24–25, 27	oscillation due to time lags, 284–285
interpretation of results, 25-28	percent recirculation, 124
leakage rate, 30	perfluorocarbon tracers, 288–289, 294–
model 30-31	296
development, 19-21	quantities of outside air delivered, 123
origin of study, 9–10	setup, 277
particulate samples, characteristics, 12	site calibration, 277
preparation and weighing of filters, 11	specification, 267–268
recommendations, 31–32	Tracer gas dilution, 257, 275–276
retrospective analysis, 28–31	1,1,1-Trichloroethane, 105
sampling duration, 10	
site selection, 13	V
study design, 10–13, 28–30	Vantilation 25 62 121 105
surface sampling, 11–12	Ventilation, 35, 63, 121, 185
volatile organic sampling, 12–13 Tenants, 76	assessment, 111 effective, 185
Tenax-GC sorbent tubes, 219, 225–226	effectiveness, 47, 187
Thermosorb cartridge, 222–223	efficiency, air movement pathways, 114–
Threshold limit values, 87	115
in concident minutes, or	* **

equivalent, 196

inadequate, 71–72	experimental pro
instrumentation, 257	gaseous sample:
measurement, 257	237
mechanical, 121	indoor and outdo
models, 191–193	25, 27, 248-
natural, 81, 121	low-boiling com-
reduction and health, 57	breakthrough
testing, 104	precision and
Ventilation rate, 51, 244, 257–264	mass-balance mo
across-the-envelope, 187	monitoring, 225-
air quality and, 58–59	multisorbent sa
assessment, 113–114	Multisorben
calibration system, 262-263	paint, chromato
codes and standards, 81	passive sampling
computer-controlled data acquisition sys-	retention times,
tem and driving software, 264	sampling, 12-13
effective, 113–114, 191	valving diagra
electron capture detector, 259-261	source strengths
equivalent, 185, 188	
gas chromatograph, 258	
instrumentation, 262–264	
sampling system, 262	
Venting factors, 174	Wadden and Schef
Volatile organic chemicals, 4, 9, 219	Walk-through surve
adhesive, 243	Water
chromatographic scan, 239, 241	benzo(a)pyrene,
source strength, 254–255	vapor, monitorin
carpet, chromatographic scan, 239-240	Weather, effects or
collection on solid sorbents, 234	tion, 16
concentrations, 48, 105, 250-252	Weatherization, 14
as function of ventilation rate, 250, 252-	Wind effect param
253	•
consumer product testing, 237	
diffusive sampling, 29	
environmental chamber/gas chromato-	
graphic instrumental system, 235–236	XAD-2 resin, 229
÷ .	*

experimental procedure, 236–238 gaseous sample introduction system, 235-237 indoor and outdoor concentrations, 22, 24-25, 27, 248–250 low-boiling compounds breakthrough volumes, 247 precision and accuracy, 247-248 mass-balance model, 251, 253 monitoring, 225-227 multisorbent sampling technique. See Multisorbent sampling technique paint, chromatographic scan, 239, 242 passive sampling, 17, 226-227 retention times, 237-238 sampling, 12–13 valving diagram, 236-237 source strengths, 254

W

Wadden and Scheff single-cell model, 189 Walk-through survey, 65 Water benzo(a)pyrene, 181 vapor, monitoring, 136-138 Weather, effects on procedure implementation, 16 Weatherization, 142 Wind effect parameter, 192

X