S1 AMERICAN SOCIETY FOR TESTING AND

METALLOGRAPHY – A PRACTICAL TOOL FOR CORRELATING THE STRUCTURE AND PROPERTIES OF MATERIALS

A symposium presented at the Seventy-sixth Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa., 25-26 June 1973

ASTM SPECIAL TECHNICAL PUBLICATION 557 Halle Abrams and G. N. Maniar, symposium cochairmen

04-557000-28

© by AMERICAN SOCIETY for TESTING and MATERIALS 1974 Library of Congress Catalog Card Number: 74-77096

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Tallahassee, Fla. July 1974

Second Printing May 1981 Baltimore, Md.

Foreword

The symposium on Metallography—A Practical Tool for Correlating the Structure and Properties of Materials, was given at the Seventy-sixth Annual Meeting of the American Society for Testing and Materials held in Philadelphia, Pa., 25-26 June 1973. Committee E-4 on Metallography sponsored the symposium. Halle Abrams, Bethlehem Steel Corporation, and G. N. Maniar, Carpenter Technology Corporation, presided as symposium cochairmen.

Related ASTM Publications

Electron Beam Microanalysis, STP 506 (1972), \$3.75 (04-506000-28)

Stereology and Quantitative Metallography, STP 504 (1972), \$9.75 (04-504000-28)

Manual on Electron Metallography, STP 547 (1973), \$5.25 (04-547000-28)

Contents

Introduction	1
Structure-Sensitive Properties of Materials Disclosed by a Combination of X-Ray Topography, X-Ray Diffraction Analysis, and Electron	
Microscopy Methods—sigmund weissmann	4
Combination Method Based on X-Ray Divergent Beam Techniques Contribution of the Back-Reflection Patterns to Precision Measure-	5
ments of Interplanar Spacings	6
Computation of Stress-Strain Configuration of Strained Crystal; Applications and Limitations	7
X-Ray Line Profile Analysis. Selected Area X-Ray Topography Based on Transmission Patterns	8
Lattice Distortions and Fracture in Brittle Crystals Disclosed by Anomalous Transmission of X-Rays (Borrmann Effect)	10
Instrumentation of X-Ray Divergent Beam Combination Method Study of Fracture Mechanism in Crystals by a Combination Method Based on X-Ray Pendellosung Fringes, Double-Crystal Diffract-	14
ometry, TEM, and SEM Discussion—Interplay of Component Techniques in Combination	16
Methods	20
Conclusions	21
X-Ray Diffraction-A Versatile, Quantitative, and Rapid Technique of Metallography-LEO ZWELL	23
Specimen Preparation	24
Elemental Analysis	25
Phase Identification	29
Other Structural Characteristics	34
Conclusion	40
The Use of Hot-Stage Microscopy in the Study of Phase Transforma- tions-B. L. BRAMFITT, A. O. BENSCOTER, J. R. KILPATRICK, AND A.	
R. MARDER	43
Experimental Technique	43
Heating Stage	44
Applications	54
Examination of Materials by Coherent Light Techniques-R. J. SCHAEFER,	
J. A. BLODGETT, AND M. E. GLICKSMAN	71

Coherence	72
Optical Transforms	72
Holography	75
Optical Correlation	84
Summary	84
The Electron Microprobe as a Metallographic Tool-J. I. GOLDSTEIN	86
Electron Microprobe	87
Elemental Analysis	94
Scanning Electron Probe	103
Characterization of Phases	108
EMP Analysis of Phases	115
Extension of Instrument Capability	120
Transmission Electron Microscopy in Materials Research-M. G. H. WELLS	5
AND J. M. CAPENOS	137
Instrument Design Improvements	141
New Observation Techniques	141
Use of TEM in Structure-Property Relationships	144
High Voltage Electron Metallography-Achievements and Prospects-	
A. SZIRMAE AND R. M. FISHER	169
Characteristics of High Voltage Microscopy	171
Applications	184
Future Developments	196
Microstructure Approach to Property Optimization in Wrought Supe	er-
alloys—D. R. MUZYKA AND G. N. MANIAR	198
Alloys	199
Primary Manufacturing Steps	201
Phases in Wrought Superalloys and Metallographic Techniques	203
Microstructures and Properties	205
Recent Developments	206
Micrograin Processing	206
Structure Control Heat Treating	208
Minigrain Processing	210
Thermomechanical Processing	212
Summary	217
Phase Separation as a Technique for the Characterization of Superallo	ys
-O. H. KRIEGE	220
Specific Techniques for Phase Separation	221
Analysis of Separated Phases	225
Application of Phase Separation to Metallurgical Studies	227
Summary	233