basic rubber testing:

Selecting Methods for a Rubber Test Program Editor: John S. Dick

Basic Rubber Testing: Selecting Methods for a Rubber Test Program

John S. Dick, editor

ASTM Stock Number: MNL39

ASTM International 100 Barr Harbor Drive PO Box C700 West Conshohocken, PA 19428-2959

Printed in the U.S.A.

Library of Congress Cataloging-in-Production Data

Dick, John S.

Basic rubber testing: selecting methods for a rubber test program/John S. Dick. p. cm.
"ASTM Stock Number: MNL39."
Includes bibliographical references and index.
ISBN 0-8031-3358-8
1. Rubber—Testing. I. Title.

TA455.R8D53 2003 678'.21'0287—dc21

2003056053

Copyright © 2003 ASTM International, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; Tel: 978-750-8400; online: http://www.copyright.com/.

NOTE: This manual does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this manual to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

> Bridgeport, NJ Aug. 2003

Foreword

THIS PUBLICATION, *Basic Rubber Testing: Selecting Methods for a Rubber Test Program*, was sponsored by Committee D11 on Rubber and D24 on Carbon Black. This is Manual 39 in ASTM International's manual series.

Contents

Foreword	l	iii
Preface		xv
Acknowl	edgment	viii
	CHAPTER 1	
Introduct	ion—by John Dick	1
1.1	History	1
1.2	ASTM D11 Standards	1
1.3	Purpose	2
1.4	Economic Savings for Users and Producers Through Test	
	Method Rationalization	2
1.5	Importance of Quality	4
1.6	Standard Target Values and "Tolerance Stack-up"	5
1.7	Testing Bias	7
1.8	What Makes for a Good Standard Test Method?	8
	1.8.1 Accuracy	9
	1.8.2 Repeatability	9
	1.8.3 Reproducibility	9
	1.8.4 Stability	10
	1.8.5 Linearity	11
1.9	The Rubber Process	12
1.10	Raw Rubber and Compounding Ingredients	13
1.11	The Recipe	13

General	Test M	fethods—by John Dick			
2.1	2.1 Introduction to the Rubber Test Laboratory				
	2.1.1	Compounding Ingredient Storage System	17		
	2.1.2	Weighing Systems	18		
	2.1.3	Mixer Systems	19		
	2.1.4	Curing Procedure	20		
2.2	Gene	ral Methods	20		
	2.2.1	Mooney Viscometer ASTM D 1646	20		
		2.2.1.1 Mooney Viscosity	22		

	2.2.1.2	Mooney Stress Relaxation Test	26
	2.2.1.3	Measuring Pre-Vulcanization Characteristics	30
2.2.2	Oscillat	ting Disk Curemeter ASTM D 2084	30
	2.2.2.1	ODR Cure Test Parameters	34
2.2.3	Rotorle	ss Curemeter ASTM D 5289	38
2.2.4	Rotorle	ss Shear Rheometer ASTM D 6204	40
	2.2.4.1	Elastic Torque (S')	42
	2.2.4.2	Viscous Torque (S")	42
	2.2.4.3	Tangent δ (Delta)	43
	2.2.4.4	Storage (Elastic) Modulus (G')	43
	2.2.4.5	Loss (Viscous) Modulus (G")	43
	2.2.4.6	Dynamic Viscosity η', η", η*	43
2.2.5	Tensile	Properties ASTM D 412	47
2.2.6	After-C	Cure Dynamic Properties for Quality	
	Assura	nce and Development ASTM D 6601	49
2.2.7	Other C	Cured Physical Property Measurements	50
	2.2.7.1	Tear Resistance ASTM D 624	50
	2.2.7.2	Air Oven Aging ASTM D 573	51
	2.2.7.3	Goodrich Flexometer Heat Buildup	
		ASTM D 623	52
	2.2.7.4	Flex Cracking Resistance	53
	2.2.7.5	Liquid Immersion Properties ASTM D 471	53
	2.2.7.6	Compression Set ASTM D 395	54
	2.2.7.7	Rubber Hardness ASTM D 2240	55
	2.2.7.8	Abrasion Resistance ASTM D 2228	55
	2.2.7.9	Low Temperature Properties ASTM D 1053	55
	2.2.7.10	Ozone Resistance D 1171	56
2.2.8	The Sta	ndard Classification System for Rubber	
	Produc	ts used in Automotive Applications ASTM D	
	2000		57

Testi	ing l	Natural Rubber—by Alek Vare	61
	3.1	Introduction and History	61
	3.2	Sampling and Sample Preparation by ASTM D 1485	63
	3.3	Technical Grades and Basis for Classification by ASTM	
		D 2227	64
	3.4	Methods for Chemical Analysis of Natural Rubber by	
		ASTM D 1278	65
		3.4.1 Percent Dirt	66
		3.4.2 Volatile Matter	66
		3.4.3 Copper Content	66
		3.4.4 Manganese Content	67

	3.4.5 % Ash	67
	3.4.6 Iron Content	67
	3.4.7 Acetone Extract	67
	3.4.8 Nitrogen	68
3.5	Plasticity Retention Index, ASTM D 3194	68
3.6	Color Index ASTM D 3157	69
3.7	Standard Test Method for Evaluation of Natural Rubber	
	ASTM D 3184	69
3.8	New Standard Test Method for Characterizing Natural	
	Rubber Grades—ASTM D 6204, Part B	70

Testing S	Synthet	ic Rubb	er—by Julia B. Zimmerman	72	
4.1	Synthe	etic Rubl	per History and Nomenclature	72	
4.2	Ćonsu	imer-Pro	ducer Agreement	73	
4.3	Physic	al Tests	for Synthetic Rubber	75	
4.4	Standa	ard Test	Recipes and Test Procedures	77	
4.5	Proces	sability	of SBR with the Mooney Viscometer	79	
4.6	Chem	Chemical Tests for Synthetic Rubbers			
	4.6.1	Organic	Acids, Soap, Oil, Total Extractables	80	
		4.6.1.1	Total Extractables	80	
		4.6.1.2	Organic Acid and Soap	81	
		4.6.1.3	Oil	81	
	4.6.2	Volatile	Matter	81	
	4.6.3	Total ar	nd Water Soluble Ash	82	
	4.6.4	Determ	ination of Carbon Black in Masterbatch	82	
	4.6.5	Percent	Gel, Swelling Index, and Dilute Solution		
		Viscosit	y -	82	
	4.6.6	Nitroge	n Content of NBR (or HNBR)	85	
	4.6.7 Test Methods for HNBR		85		
		4.6.7.1	Unsaturation of HNBR by Iodine Value	85	
		4.6.7.2	Unsaturation of HNBR by Infrared		
			Spectrophotometry	85	
	4.6.8	EPDM 7	Tests	86	
		4.6.8.1	Percent ENB or DCPD in EPDM		
			Terpolymers	86	
	4.6.9	SBR Tes	sts	86	
		4.6.9.1	Bound Styrene in SBR	86	
	4.6.10	Tests fo	r CIIR or BIIR	87	
		4.6.10.1	Determination of Bromine in the Presence		
			of Chlorine by Oxygen Combustion	87	
	4.6.11	General	Comment on Determination of Metals in		
		Polyme	rs	88	

viii CONTENTS

Testing C	Carbon Black—by Jeffery A. Melson	89
5.1	Introduction	89
	5.1.1 How is Carbon Black Used?	89
	5.1.2 What are Surface Area, Structure and Surface	
	Activity—Why are they important?	89
5.2	Classification	91
	5.2.1 Basis for Classification (D 1765)	91
5.3	Standard Reference Blacks	92
	5.3.1 Validation of Test Method Precision and Bias	
	(D 4821)	95
	5.3.2 Improving Test Reproducibility Using ASTM	
	Reference Blacks (D 3324)	95
5.4	Tests that Relate to Surface Area (Particle Size)	95
	5.4.1 Iodine Adsorption Number (D 1510)	95
	5.4.2 Nitrogen Adsorption	97
	5.4.3 CTAB (Cetyltrimethylammonium Bromide) Surface	
	Area (D 3765)	98
	5.4.4 Primary Aggregate Dimensions from Electron	
	Microscope Image Analysis (D 3849)	98
5.5	Tests which Relate to Structure (Aggregates and	
	Agglomerates)	98
	5.5.1 Oil Absorption Number (D 2414)	98
	5.5.2 Oil Absorption Number of Compressed Sample	
	(D 3493)	99
	5.5.3 Compressed Volume Index (D 6086)	99
5.6	Pellet Quality	100
	5.6.1 Pour Density (ASTM D 1513)	100
	5.6.2 Pellet Size Distribution (ASTM D 1511)	100
	5.6.3 Pelleted Fines and Attrition (ASTM D 1508)	101
	5.6.4 Sieve Residue (ASTM D 1514)	101
	5.6.5 Individual Pellet Hardness	101
	5.6.5.1 Individual Pellet Hardness (ASTM D 3313)	102
	5.6.5.2 Automated Individual Pellet Hardness	
	(ASTM D 5239)	102
	5.6.5.3 Mass Strength (D 1937)	102
5.7	Rubber Test Recipes and Properties	102
	5.7.1 Carbon Black in Styrene-Butadiene Rubber—	
	Recipe and Evaluation Procedure (ASTM D 3191)	
	and Carbon Black Evaluation in Natural Rubber	
	(ASTM D 3192)	102

Testing	Silica a	and Organosilanes—by Jeffery A. Melson	105
6.1	Introd	duction	105
6.2	Silica Types		
	6.2.1	Silica Applications versus Carbon Black	106
	6.2.2	Classification	106
6.3	Surfa	ce Area	107
	6.3.1	Surface Area by BET Nitrogen Adsorption	107
		6.3.1.1 Surface Area by Single Point B.E.T. Nitroge	en
		Adsorption (D 5604)	107
		6.3.1.2 Surface Area by Multipoint B.E.T. Nitroger	า
		Adsorption (D 1993)	108
	6.3.2	Surface Area by CTAB (Cetyltrimethylammonium	
		Bromide)	108
		6.3.2.1 CTAB (Cetyltrimethylammonium Bromide	e)
		Surface Area (D 6845)	108
6.4	Struct	ture (Aggregates and Agglomerates)	108
	6.4.1	n-Dibutyl Phthalate Absorption Number (D 6854)	108
6.5	Gene	ral Methods	109
	6.5.1	Volatiles (D 6738)	109
	6.5.2	pH Value (D 6739)	109
6.6	Orgai	nosilanes	109
	6.6.1	Determination of Residue on Ignition (D 6740)	109
	6.6.2	Determination of Sulfur in Silanes (D 6741)	109
	6.6.3	Silanes used in Rubber Formulations (bis-	
		(triethoxysilylpropyl)sulfanes): Characterization	
		by High Performance Liquid Chromatography—	
		(D 6843)	110
	6.6.4	Silanes used in Rubber Formulations (bis-	
		(triethoxysilylpropyl)sulfanes): Characterization by	
		Gas Chromatography (D 6844)	110

Testing	g Minera	al Fillers for Use in Rubber—by John Dick	111
7.1	Grou	nd Coal	111
	7.1.1	Particle Size	111
	7.1.2	Sieve Testing	113
	7.1.3	Ash	113
	7.1.4	Alpha Quartz	113
	7.1.5	Heat Loss (moisture)	114

x CONTENTS

	7.1.6	Acidity	114
	7.1.7	Volatile Matter	114
	7.1.8	Density	115
7.2	Titani	116	
	7.2.1	Titanium Dioxide Purity	117
	7.2.2	pH Measurements	117
	7.2.3	Coarse Particles	117
	7.2.4	Moisture Content	118
	7.2.5	Rutile Content	118
	7.2.6	Tint Strength and Brightness	118
7.3	Clay	ů ů	119
7.4	Natu	121	

Oils, Plasticizers, and Other Rubber Chemicals—by John Dick			124				
8.1	Rubber Processing and Extender Oils			124			
	8.1.1	Aromat	Aromaticity				
	8.1.2	Average	Average Molecular Weight				
	8.1.3	Volatili	Volatility				
	8.1.4	Polar C	ompounds	126			
	8.1.5	Asphalt	renes	126			
	8.1.6	Wax Co	ontent	127			
	8.1.7	ASTM (Dil Classification	127			
	8.1.8	ASTM (Dil Tests	127			
		8.1.8.1	Clay-Gel Analysis, A Column				
			Chromatographic Method (D 2007)	127			
		8.1.8.2	Viscosity-Gravity Constant (D 2501)	128			
		8.1.8.3	Kinematic Viscosity (D 445)	129			
		8.1.8.4	Aniline Point and Mixed Aniline Point				
			(D 611)	129			
		8.1.8.5	Pour Point (D 97)	129			
		8.1.8.6	Acid and Base Number by Titration (D 974)	129			
		8.1.8.7	API Gravity (D 1298)	130			
		8.1.8.8	Color (D 1500)	132			
		8.1.8.9	UV Absorbance (D 2008)	132			
		8.1.8.10	Flash Point Open Cup (D 92)	132			
8.2	Synth	etic Plast	ticizers	132			
	8.2.1	Standar	d Abbreviations	132			
	8.2.2	Standar	d Test Methods	134			
		8.2.2.1	Specific Gravity (D 70, D 891, and D 2111)	134			
		8.2.2.2	Color (D 1209 and D 1544)	134			
		8.2.2.3	Refractive Index (D 1218)	135			

		8.2.2.4	Saponification Value (D 1962)	135
		8.2.2.5	Brookfield Viscosity (D 2196)	135
		8.2.2.6	Heat Loss (D 2288)	136
		8.2.2.7	Karl Fischer (E 203)	136
		8.2.2.8	Flash Point Open Cup (D 92)	137
8.3	Curat	ives		137
	8.3.1	Sulfur		138
		8.3.1.1	Sulfur Insolubles (D 4578)	138
		8.3.1.2	Percent Oil (D 4573)	141
		8.3.1.3	Acidity (D 4569)	141
		8.3.1.4	Wet Sieve (D 4572)	141
		8.3.1.5	Percent Ash (D 4574)	141
	8.3.2	Rubber	Accelerators	141
		8.3.2.1	Standard Abbreviations	145
		8.3.2.2	Initial Melting Point (D 1519)	145
		8.3.2.3	Wet Sieve (Similar to D 4572)	147
		8.3.2.4	Percent Ash (D 4574)	149
		8.3.2.5	Percent Heat Loss (D 4571)	149
		8.3.2.6	Percent Moisture in Sulfenamides (D 4818)	150
		8.3.2.7	Percent Insolubles in Sulfenamides (D 4934)	150
		8.3.2.8	Assay for Sulfenamides (D 4936)	150
		8.3.2.9	MBTS Assay (D 5051)	151
		8.3.2.10	Assay for DPG and DOTG (D 5054)	151
		8.3.2.11	MBT Assay (D 1991)	151
	8.3.3	Zinc Ox	tide	151
		8.3.3.1	American Process or Direct Type	152
		8.3.3.2	French Process or Indirect Type	152
		8.3.3.3	Secondary Zinc Oxide—Chemical Type	152
		8.3.3.4	Secondary Zinc Oxide—Metallurgical	152
		8.3.3.5	Zinc Oxide Treatment	152
		8.3.3.6	Zinc Oxide Test Methods	153
			8.3.3.6.1 Surface Area (D 3037 and D 4315)	153
			8.3.3.6.2 Percent Lead and Cadmium	
			(D 4075 and D 4315)	153
			8.3.3.6.3 Percent Residue on 45 µm Sieve	
			(D 4315)	153
			8.3.3.6.4 Percent Heat Loss at 105°C (D 280)	153
			8.3.3.6.5 Percent Sulfur (D 3280 and D 4315)	154
			8 3 3 6 6 Percent Zinc Oxide Purity (D 3280	-0 1
			and D 4315)	154
			8.3.3.6.7 Test Recipe (D 4620)	154
	8.34	Stearic	Acid	154
	0.011	834.1	Iodine Value (D 1959)	156
		8342	Titer (D 1982)	157
		0.0.4.4		101

		8.3.4.3	Acid Value (D 1980)	157
		8.3.4.4	Saponification Value (D 1962)	157
		8.3.4.5	Percent Ash (D 1951)	158
		8.3.4.6	Unsaponfication Matter (D 1965)	158
		8.3.4.7	Trace Metal (D 4075)	158
8.4	Antidegradants			158
	8.4.1	Člass I:	I: <i>p</i> -Phenylenediamine (PPDs)	
		8.4.1.1	Type 1: N,N'-dialkyl- <i>p</i> -phenylenediamines	159
		8.4.1.2	Type II: N-alkyl-N'aryl- <i>p</i> -	
			phenylenediamines	159
		8.4.1.3	Type III: N,N'-diaryl- <i>p</i> -phenylenediamines	160
	8.4.2	Class 2	Trimethyl-dihydroquinolines (TMQs)	160
	8.4.3	Class 3,	, Phenolics	160
		8.4.3.1	Type I: Monofunctional Phenols	160
		8.4.3.2	Type II: Bifunctional Phenols	160
		8.4.3.3	Type III: Multifunctional Phenols	160
	8.4.4	Class 4	, Alkylated Diphenylamines	160
	8.4.5	Class 5	, Aromatic Phosphites	161
	8.4.6	Class 6	, Diphenylamine-Ketone Condensates	161
	8.4.7	Standa	rd Abbreviations	161
	8.4.8	Test Me	ethods for Antidegradants	161
		8.4.8.1	Purity of <i>p</i> -Phenylenediamine	
			Antidegradant by Gas Chromatography	
			(D 4937)	161
		8.4.8.2	Purity of Phenolic Antioxidants	161
		8.4.8.3	Purity of TMQs, Alkylated Diphenylamines	
			and Phosphite Antidegradants	163
		8.4.8.4	Volatile Materials for PPDs	163
		8.4.8.5	Percent Ash	163
		8.4.8.6	Softening Point	163
		8.4.8.7	Hydrolysis Stability	163
8.5	Prote	ctive Wa	xes	163
	8.5.1	Test Me	ethods	164
		8.5.1.1	Boiling Point, Determination by GC	
			Distillation (D 2887)	164
		8.5.1.2	Melting Point and/or Congealing Point	
			(D 87, D 938, D 3944, D 4419)	164
		8.5.1.3	Refractive Index (D 1747)	165
		8.5.1.4	Percent Oil (D 721)	165
		8.5.1.5	Viscosity (D 445)	166
		8.5.1.6	Color (D 1500)	166
		8.5.1.7	Needle Penetration (D 1321)	166

Recycled Rubber —by Krishna C. Baranwal 16 th				169
9.1	9.1 Definition and Rubber Recycling Processes			169
	9.1.1	Reclain	ning	169
	9.1.2	Ground	l Rubber	169
	9.1.3 Cryogenic Ground Rubber			170
	9.1.4	Wet Gr	ound Rubber	170
	9.1.5 "Devulcanization" Process			170
	9.1.6	Need for	or Standards	170
9.2	.2 Storage, QA Sampling and Test Plans		ampling and Test Plans	171
	9.2.1	Materia	l and Safety Data Sheets (MSDS)	171
	9.2.2	Crumb	Rubber Storage	171
	9.2.3 Sampling and Test Plans			172
9.3	Test Methods		172	
	9.3.1	Particle	Size (PS) and Particle Size Distribution (PSD)	172
	9.3.2	Particle	Size Classification (ASTM D 5603)	174
	9.3.3	Chemic	al Analysis (ASTM D 5603)	174
		9.3.3.1	Percent Extractables (ASTM D 297,	
			Section 19)	174
		9.3.3.2	Percent Ash (ASTM D 297, Section 35)	174
		9.3.3.3	Percent Carbon Black (ASTM D 297,	
			Section 39)	175
		9.3.3.4	Percent Moisture Content (ASTM D	
			1509) or Heating Loss	175
		9.3.3.5	Percent Natural Rubber Content (ASTM D	
			297, Section 53)	175
		9.3.3.6	Percent Rubber Hydrocarbon (ASTM D 297)	175
		9.3.3.7	Iron and Fiber Content (ASTM D 5603,	
			Section 7)	176
9.4	Evalu	ation of	Recycled Rubber in Compounds	176

Standard Test Methods—Insuring High-Quality Output—		
178		
178		
179		
180		
t		
180		
180		

10.2.2.2 Sensitivity	181
10.2.2.3 Calibration	181
10.2.2.4 Traceability	181
10.2.3 Step 3—Basic Sampling Principles	182
10.2.3.1 Sampling	182
10.2.3.2 Intuitive Sampling	182
10.2.3.3 Statistical Sampling	182
10.2.3.4 Protocol Sampling	182
10.2.4 Step 4—Measurement, Data Reporting and Analysis	183
10.2.4.1 Reference Materials: ASTM D 4678 and	
D 5900	184
10.2.4.2 Reference Materials: D 3324, D 4122	187
10.3 Part 2: Testing—Using Specific Standards	187
10.3.1 Natural and Synthetic Rubber, Carbon Black	187
10.3.2 Process Performance and Capability Indexes	188
10.4 Part 3: Recent Developments in Test Method Technical	
Merit	188
10.4.1 Test Method Precision: D 4483	188
10.4.1.1 Background	188
10.4.1.2 Outlier Detection	190
10.4.1.3 Outlier Rejection	190
10.4.1.4 Outlier Deletion or Replacement	191
10.4.2 Test Sensitivity: D 6600	207
10.4.2.1 Background	207
10.4.2.2 The Measurement Process	207
10.4.2.3 Test Sensitivity Concepts	208
Appendix—ASTM Test Methods	213
Index	229

Preface

TODAY THERE IS A NEW initiative in the rubber industry, brought on by new quality programs such as Six Sigma, to reduce variation and eliminate quality problems significantly in the manufacture of a very wide scope of different rubber products. For example, the automotive manufacturers are beginning to design vehicles to last 150 000 miles with minimum maintenance. This severely challenges many rubber part manufacturers, perhaps more than other groups in the automotive supply base, to improve their quality and reduce variation.

One large source of product variation in the rubber industry can be nonuniformity of received raw rubber and other compounding ingredients. There are currently over 140 ASTM Standard Methods that are actively used to test these raw materials used in the rubber industry. The mixing process also is a very large source of variation in the factory. There are another 25 ASTM methods that are used to test the quality of mixed batches. This book is designed to be a practical guide to the rubber technologist in selecting the appropriate methods for use in a testing program of raw materials, compounding ingredients, or mixed stock.

This book characterizes each group of raw materials. It explains what are some of the important chemical and physical properties that should be used in making judgements on the quality of a raw material and its usability in the production plant. It gives a basic description of the test methods that are currently available. More importantly, this book compares and contrasts the advantages and disadvantages of selecting various test methods. However, this book is not a substitute for reading the actual ASTM method itself. This book will help the reader in deciding which ASTM methods should be selected for testing a given raw material or mixed stock. This information is important to assure that a rubber laboratory is running efficiently. In today's business climate where testing resources are being restricted in many cases, it is vital that the most important tests be selected and that redundant testing be eliminated. Selecting the wrong tests wastes valuable resources and money.

John S. Dick

YEAR RECEIVED	AWARD RECIPIENTS	ACHIEVEMENTS
1981	Edwin English	Was secretary of D11 from 1975 to 1976. Was leader of the U.S. delegation to ISO TC45 for 12 years (succeeding R. Stiehler and retained this until 1992)
1982	Charles E. Tidd, Jr.	Was Chairman of D11, Rubber. Also contributed to Physical Testing (D11.10). Active with ISO TC45 as well
1984	William J. Holley	Very active with Synthetic Rubber standards (D11.23). Also active with ISO TC45
1987	Charles P. Gerstenmaier	Major contributions in the development of Carbon Black Test Methods. Also active in ISO TC45
1989	Rodney McGarry	Past Chairman of D24, Carbon Black. Major contributions in the development of Carbon Black Test Standards. Also active in ISO TC45
1989	Bobby Buffington	Major contributions in the development of Carbon Black Test Standards. Also active in ISO TC45
1990	John S. Dick	Chairman of D11.20 on Compounding Materials from 1981 to 1991. Involved in Rubber Pro- cessability Test Methods. Became the leader of the U.S. Delegation to ISO TC45 in 1992
1993	Thomas H. Spurlock	Major contributions in the development of Carbon Black Test Methods

Award of Merit Recipients (continued)

Distinguished Service Award

YEAR RECEIVED	AWARD RECIPIENT	ACHIEVEMENTS
1998	Peter Surette	For his work in D11 Rubber, including physical
		testing (D11.10), time-temperature dependent
		properties (D11.14)
1998	Julia Zimmerman	For her contributions in D11, Rubber, including
		Chemical Analysis (D11.11)
1998	John Bailey	For his activities in D24, Carbon Black, including
	•	his extensive statistical contributions
1998	Charles Gillingham	For his activities in D24, Carbon Black
1999	Clair Harmon	For his participation in D11, Rubber, including his
		involvement with Natural Rubber (D11.22)
1999	Paul Gatza	For his contributions to D11, Rubber, including
		physical testing, and rubber products
1999	Jack Thompson	For his achievements in D24, Carbon Black
2000	Ricky MaGee	For his contributions in D24, Carbon Black
2001	Ivan Erwin	For his accomplishments in D11, Rubber,
		including his chairmanship of D11.15, Rubber
		Degradation Testing
2001	Denise Kotz	For her contributions to D11, Rubber, including
		physical testing
2001	Frank Lussier	For his contributions to D11, Rubber, and
		especially toward Chemical Analysis (D11.11)
2001	Jeff Melsom	For his leadership and contributions to D24,
		Carbon Black, and his chairmanship of D24
2001	Lee Coates	For his contributions in D24, Carbon Black
2002	Alec Vare	For his accomplishments in D11—Rubber, and especially his chairmanship of D11 and D11.22 on Natural Rubbar
2002	Charles Dades	For his activities in D11 Rubber and senecially for
2002	Charles Rader	his chairmanship of D11.08 (Nomonclature and
		Terminology)
2002	Tom Powell	For his contributions in D24, Carbon Black and his
		activities in the Executive Subcommittee

Acknowledgment

Acknowledgment of Contributors to ASTM Rubber Standards

The many ASTM standards discussed in this book were created through the excellent technical knowledge, strong commitments, and hard work of hundreds of rubber technologists who volunteered their time and effort in various task groups and subcommittees of ASTM D11 (on Rubber) and D24 (on Carbon Black). These standards truly represent a consensus of the rubber industry.

Thousands of ASTM members have contributed over the last 90 years to the development of these rubber standards and their efforts should be recognized. Therefore, it is appropriate to recognize directly those ASTM members who received the ASTM "Award of Merit" or the "Distinguished Service Award" in the last 50 years. However, it should be noted that many other ASTM members, who are not listed below, have also given countless hours of excellent work to develop ASTM standards and should be recognized as well. If it were not for all these contributors, these ASTM standards would not be at the high quality level they are today.

	Awalu	
YEAR RECEIVED	AWARD RECIPIENTS	ACHIEVEMENTS
1956	Simon Collier	Chairman of D11 for 14 years (from 1944 to 1962)
1959	Elmer G. Kimmich	Very active in D11, Rubber
1961	John J. Allen	For work in D11, Rubber. Also an honorary member of D11
1962	Harry G. Bimmerman	For work in D11, Rubber. Also an honorary member of D11
1964	Arthur Juve	Very active in Rubber Compounding Materials (now D11.20), Recipient of the Goodyear Medal from the ACS
1965	Issac Drogin	Very active in D11, Rubber
1966	Benjamin S. Garvey, Jr.	Known for his contributions in rubber process- ability testing as well as rubber testing in general. Known for the "Garvey Die" design
1968	Robert Stiehler	Longest continuous participation in D11 activities. Major contributions to D11. Established the Technical Advisory Group to ISO TC 45 on Rubber. Held position as Leader of USA Delegation to ISO TC 45 from the formation date of the TAG until he retired in 1980.
1969	Joseph F. Kerscher	Chairman of D11 from 1972 to 1978. Also made honorary member. Very active in the ISO TC45 TAG
1970	Gustav Maassen	Contributions include Rubber Aging and Degra- dation Testing
1972	Maynard Torrence	Very active in Rubber Terminology (D11.08). Also active in ISO TC45
1974	William H. King	Very active in developing Rubber Physical Testing Standards (D11.10). Also active in ISO TC45
1974	Thomas D. Bolt	Significant contributions to development of Carbon Black Standards
1975	W. Howard Bryan	Contributions include Coated Fabrics (D11.37) and Rubber Thread. Also active in ISO TC45
1976	Francis G. Mees	Chair of D24 on Carbon Black for six years. Major contributions in development of carbon black standards as well as Chemical Analysis (D11.11) and Rubber Nomenclature (D11.08). Very active in ISO TC45 activities
1977	Floyd S. Conant	Chairman of D11.14, Rubber Time and Temperature Dependent Properties. Also contributed to F9— Tires. Involved in ISO TC45 activities as well
1977	J. Frank Svetlik	Major contributions in the development of Carbon Black Test Methods. Also active in ISO TC45
1978	Alan Veith	Next to R. D. Stiehler, probably has the record for longest continuous participation in D11 activities (beginning in 1952). Major contributions to D11 on Rubber as well as F9 on Tires. Also very active in statistical standards and participates in E11 and D17. Very active in ISO TC45
1978	Francis Lyon	Major contributions in the development of Carbon Black Test Methods
1979	Clifford E. McCormick, Jr.	Very much involved in Statistical Methods for application to Carbon Black testing (D24) as well as Rubber Testing (D11). Authored several publica- tions on Statistical Analysis of Carbon Black Testing
1981	Peter Larsen	Chaired Subcommittee on Time and Temperature Dependent Properties (D11.14) and Rubber Terminology. Very active in ISO TC45 on Rubber

Award of Merit Recipients

ABOUT THE EDITOR

John Dick has over 30 years of experience in the rubber industry. He was with BF Goodrich and later Uniroyal Goodrich Tire Co. as a Section Manager and Development Scientist in R&D until 1991 when he joined Alpha Technologies

(formerly Monsanto's Rubber Instruments Group) as a Senior Marketing Technical Service Specialist. Mr. Dick has authored over 45 journal and magazine publications and three books on polymer technology. He received the Monsanto Master Technical Service Award in 1994, the American Chemical Society Rubber Division "Best Paper Award" in 1995, and a University of Akron Appreciation Award in 1998 for Teaching Polymer Compounding Courses in their Continuing Education Program. He is a Fellow in ASTM International, receiving the Award of Merit in 1990. Also he has represented the United States as a delegate to the International Standards Organization (ISO) for the last 20 years. He was appointed in 1992 to be the leader of the U.S.A. Delegation to ISO TC-45 on Rubber. He teaches rubber technology courses at both University of Akron and University of Wisconsin Continuing Education Departments. He is a member of American Chemical Society, Society of Rheology, and the American Society for Quality with a CQE. He is also a representative to the RMA. Mr. Dick received his B.S. degree from Virginia Polytechnic Institute in 1970 and an M.A. from the University of Akron in 1979. His hobbies include photography and amateur radio.

> ISBN:0-8031-3358-8 Stock #: MNL39

> > www.astm.org