Handbook of FATIGUE TESTING

(G)) STP 566 American society for testing and materials

HANDBOOK OF FATIGUE TESTING

Sponsored by ASTM Committee E-9 on Fatigue

ASTM SPECIAL TECHNICAL PUBLICATION 566 S. Roy Swanson, Editor

List price \$17.25 04-566000-30

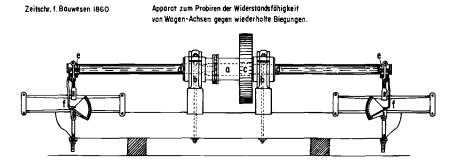
AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

© by American Society for Testing and Materials Library of Congress Catalog Card Number: 74-83946

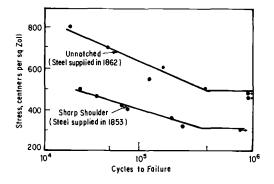
NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Baltimore, Md. October 1974


Foreword

In 1949 Committee E-9 on Fatigue published ASTM STP 91, Manual of Fatigue Testing. The project leading to STP 91 involved the specific writing of eight members of E-9 and the discussions and criticisms of members of the main committee over a period of three years. STP 91 was a modest effort and succeeded in presenting what was then considered to be the current practice and views of E-9 members.


The present Handbook of Fatigue Testing is the culmination of an extensive attempt to survey and document the broad facets of fatigue testing. Subject matter was provided by a large number of E-9 members to an editorial group initially headed by Foster B. Stulen and Professor S. M. Marco, both of whom are now deceased. Consolidation of this input has been completed under the editorship of Dr. S. Roy Swanson, with some major changes in emphasis. The reader will find a definite attempt to discuss fatigue machines, test techniques, and associated equipment that can satisfy the requirements of a modern research person or test engineer. More often than not, their needs reflect the desire to test material, components, and structures under conditions that clearly simulate service loading and environments.

As Chairman of Committee E-9, I am grateful for the time and effort that Dr. Swanson put into completing this handbook. I am also grateful to those individuals specifically cited in the Editor's brief Preface.

> W. S. Hyler, Chairman ASTM Committee E-9 on Fatigue

Wöhler's machine for fatigue testing of railway axles.

Wöhler's S-N curves for Krupp axle steel.

Preface

This handbook contains contributions from a large number of ASTM Committee E-9 members. My task has been to take this information and distill it into a unified theme. Because of my background and interests, the unified theme embraces fatigue testing under simulated loading conditions. For this reason, there is considerable emphasis on servocontrolled fatigue test systems and allied equipment. This concentration on modern equipment appears to be particularly important for the young research worker or test engineer, since it is this sort of equipment to which he will be introduced.

I should like to recognize with special gratitude those individuals who have spent long hours reviewing and criticizing the various drafts. Specifically, I would like to thank John Bennett, Ron Broderick, Horace Grover, Herbert Hardrath, Walter Hyler, Harold Reemsnyder, and Dick Thurston. These gentlemen formed the review board which has guided my efforts over the past few years.

> S. Roy Swanson Editor

Related ASTM Publications

Manual on Low Cycle Fatigue Testing, STP 465 (1970), \$12.50, 04-465000-30

Cyclic Stress-Strain Behavior—Analysis, Experimentation, and Fatigue Prediction, STP 519 (1973), \$28.00, 04-519000-30

Fatigue at Elevated Temperatures, STP 520 (1973), \$45.50, 04-520000-30

Contents

Chapter	1—Introduction 1				
	1.1	Purpose	1		
	1.2	Scope	2		
Chapter	2-Considerations in the Design of the Fatigue Test Program				
		Introduction	4		
	2.2	General Planning	5		
		2.2.1 Objectives	5		
		2.2.2 Constraints	7		
		2.2.3 Cost Estimation	7		
	2.3	Test Program Design	8		
		2.3.1 Requirements of a Sound Experiment	9		
		2.3.2 Specimen Considerations	10		
	2.4	Conduct of a Program	12		
		2.4.1 Test Procedure	12		
		2.4.2 Test Precautions	13		
	2.5	Presentation of Data	14		
		2.5.1 Analysis	14		
		2.5.2 Reporting	15		
	2.6	Multilaboratory Test Programs	15		
		2.6.1 Multilaboratory Data Generation	15		
		2.6.2 Interlaboratory Test Programs	16		
	2.7	Final Remarks	18		
Chapter	3-Basi	c Elements of a Fatigue Test System	19		
-	3.1	Introduction	19		
	3.2	The Load Train	19		
	3.3	Power Supply	23		
	3.4		23		
		3.4.1 Programming	23		
		3.4.2 Sensors	25		
		3.4.3 Transducer Conditioners	29		
	3.5	Readout Devices	30		
		3.5.1 Oscilloscopes	30		
		3.5.2 Recorders	31		
	3.6	Safety Cut-Offs	31		
	3.7	Devices to Alter the Mode of Loading	32		

Chapter	4—	Drive	e System	is for Conventional Fatigue Testing Machines	37	
			Introdu		37	
		4.2		es of Test Systems	38	
				Parameter Under Control	38	
				Programming Capability	39	
				Control Mode	43	
				Closed Loop Control	46	
			4.2.5	Energy Transfer	5 0	
				4.2.5.1 Hydraulic Actuators	51	
			4.2.6	Energy Conservation	56	
		4.3	Axial-L	oad Fatigue-Testing Systems	58	
			4.3.1	Mechanical Drive Systems	58	
			4.3.2	Electromagnetic Shakers	60	
			4.3.3	Pulsators	62	
		4.4	Bendin	g Machines	63	
			4.4.1	Rotating Beam Machines	65	
		4.5	Rolling	Contact Fatigue	69	
			4.5.1	Rolling Contact Bench Rigs	69	
		4.6	Gear T	esters	70	
			4.6.1	Bearing Tests	71	
		4.7	Torsion	Fatigue Systems	72	
Chapter	5—Drive Systems for Multiaxial and Special Purpose					
		Test	Systems		77	
				Biaxial Tension	77	
		5.2	Tensior	n/Torsion Systems	78	
		5.3	Tensior	n/Pressurization	81	
				g/Torsion	82	
		5.5	Triaxia	1 Stress	83	
Chapter	6—	Spec		or Material Fatigue Testing	85	
		6.1		en Design	85	
				Axially-Loaded Specimens	86	
				Bending Specimens	90	
			6.1.3	Torsion Specimens	91	
	(6.2		en Preparation	91	
				Machining the Specimen	92	
				6.2.1.1 Round Specimens	92	
				6.2.1.2 Flat Specimens	94	
				6.2.1.3 Notched Specimens	95	
				Polishing the Specimen	96	
				6.2.2.1 Round Specimens	96	
				6.2.2.2 Flat Specimens	96	
				6.2.2.3 Notched Specimens	97	

		6.2.3 Specimens for Surface Treatment Studies	97
	6.3		98
		6.3.1 Specimen Inspection and Measurement	98
		6.3.2 Specimen Storage	99
		6.3.3 Specimen Data Record	100
	6.4	Special Problems—Heat Generation	101
	6.5	Final Remarks	102
Chapter	7—Accuracy of Fatigue Testing		
	7.1	Specimen Dimensional Accuracy	105
	7.2	Gripping Effects	105
		7.2.1 Self-Aligning Devices	108
	7.3	Machine Effects	109
		7.3.1 Alignment	109
		7.3.2 Verification	110
	7.4	Overall Accuracy	114
		7.4.1 Static and Dynamic Accuracy	114
		7.4.2 Readout Accuracy	116
		7.4.3 Control Accuracy	117
		7.4.4 Program Accuracy	117
		7.4.5 Overall Accuracy	117
Chapter	8—Monitoring Fatigue Testing		
	8.1	Measurement of Cyclic Strain	122
		8.1.1 Contacting Extensometers	122
		8.1.2 Noncontacting Extensometers	124
	8.2	Measurements of Fatigue Damage—Crack Initiation	
		and Propagation	124
Chapter		ironments for Fatigue Testing	136
	9.1	Corrosive Environments	136
	9.2	Elevated Temperature Testing	138
		Low-Temperature Testing	144
	9.4	Pressure or Vacuum Fatigue Testing	144
	9.5	Fatigue Due to an Acoustic Environment	146
	9.6	Fretting Fatigue Testing	147
		9.6.1 Fretting Fatigue Machines	147
	9.7	Conclusion	149
Chapter		ctural Fatigue Testing	151
		Programming Information	152
	10.2	2 Full-Scale Fatigue Testing	154
		10.2.1 Resonant Systems for Complete Structures	158
		10.2.2 Acoustic Excitation	159

10.2.3 Structural Fatigue Testing with Concurrent	
Thermal Cycling	159
10.2.4 Monitoring Fatigue Damage in	
Structural Tests	160
10.3 Fatigue Testing of Components	162
10.3.1 Forced Vibration Systems for Components	162
10.4 Fail-Safe Aspects	163
Chapter 11—Automated Fatigue Testing	169
11.1 Computer Control	170
11.2 Programming	172
11.3 Interfacing a Computer with a Fatigue Test System	172
11.4 Digital Fatigue Test Program Software	176
11.5 Analog Computers	186
11.6 Hybrid Systems	187
11.7 Data Acquisition	188
11.8 Conclusions	189
Appendix ANomenclature	191
Appendix B—Specifications in the Field of Fatigue Testing	201
Appendix C—Professional Society Groups Related to Fatigue Testing	205