Subject Index

ds, 31–32 hene, 19, 25 .0.)nonane, 68–69, 70 ., 18, 121–124, 135–138 .25, 136–138 .us braunii, 84–104 .us rubber (BOR), 82–104 .c .c
ulfide, 107
mber range, 70–72, 74, 79 134–135 nescence detection, 39 raphy on liquid, 137 55 e-ionization detection /FID), 53, 76–79 s spectrometry, 5 rements in, 137–138 gas (Py-GC), 82 and basic/neutral alu- a adsorption, 39, 42 ninous, 104 rich low rank, 102–104
(COO), 82-104 es, 51-52, 55-79 e, 116, 118
D
6, 58-79 marine, 39, 45 on, 44

Discriminant analysis, 84, 97-104

Azaaromatics, 30, 35

 \mathbf{E}

Electron-impact mass spectrometry (EI/MS), 50-51, 59, 72-79 Epimers, 137

fossil, 50, 121-122, 126 jet, 39, 41, 44 maturation, 121, 125-126, 137 migration, 121, 137

F

Feedstock composition, 37 Field ionization, synfuel analysis with, 47 Field ionization (FI) mass spectrometry of acid and base fractions, 31-37 of saturated hydrocarbons, 50, 54, 69-79 Field ionization sensitivities for saturated hydrocarbons, 49 Fischer assay oil shale pyrolysis gas samples, 115-116, 118 Flame-ionization detection/gas chromatography (FID/GC), 53. 76-79 Flame-ionization detector (FID) gas chromatogram, 7 Fluorenes, 15 Fractionation, 39, 40-41, 44 Fractions, oil acid, 27, 29, 31-32 base, 27, 30, 33-37 neutral, 30 nitrogen, 39 Fragmentation, 51 hopane, 123

Fuel products

Fuels

fractionation, 39, 40-41

sis, 42-45

diesel, 39, 45

mass spectrometric analysis, 42

potentiometric titration, 40-41

biodegradation, 122, 129-133

compared with titration analy-

G

Gas analysis, on-line, 106 Gas chromatographic analysis pyrolysis (Py-GC), 82 of saturated hydrocarbons, 54-55 Gas chromatographic/flame-ionization detection (GC-FID), 53, 76-79 Gas chromatographic/mass spectrometric (GC/MS) analysis improvements, 137-138 of Paraho shale oil, 5 Gas samples, 115-116, 118 Gasoline, 39 GCK (automatic quantitation procedure), 10-15, 19-25 Grab sample techniques, 114-116, 118 Gram sensitivities, 57-59 Green River oil shale, 27, 39 kerogen, 82-104 Mahogany Zone, 108

H

Heterocarbon fragments, 23
Homohopanes, 124-126, 138
Hopanes, 122-125, 132
Hydrocarbons
aliphatic, 90-91
aromatic, 31, 50-51, 66, 72, 91
isoprenoid, 75-7, 88-89
saturated, 49
steroid, 133-136
Hydrogen sulfide, 107
Hydrogen/carbon ratio, 135

I

Ion detection, multiple, 6
Ion intensities, molecular, 51, 72
distribution, 46
of kerogens, 90-96
Ion scans, daughter, 109, 114, 117
Indanes, 19, 21
Indenes, 22
Indoles, 25
Isomers
2-methyl, 7
structural, 82
Isoprenoid hydrocarbons, 75-77,
88-89, 102
Isopropanethiol, 115, 118

J

Jet fuel, 39, 41, 44

K

Kentucky oil shale, 27, 115-116 Kerogens, key world oil shale, 81 Ketones, 25 Kukersite kerogen, 82-104

L

Lignins, 91 Lignite, 103-104 Linear regression analysis, 67-68

M

Magnet, fast scanning laminated, 137-138 Magnetic scanning multiple ion detection (MID), 138

Mass spectral analysis (see also Gas chromatographic/mass spectrometric analysis) of acid/base shale oil fractions, 27 collisionally activated dissociation (CAD), 109, 110 of fuel products, 42-45, 46-47 of hydroprocessed shale oil products, 38 normal scans, 110 petroleum exploration and, 121 pyrolysis, 81 integrated mode, 83-84 time-resolved mode, 84, 90-92 Mass spectrometry/mass spectrometry (MS/MS), triple quadrupole, 106 Messel shale kerogen, 82-104 Methoxyphenols, 15, 17 Mole sensitivities, 55-56, 64, 67-68 Molecular weight and gram sensitiity, 59-65 Multiple array processor (MAP), 122, 130, 132 Multivariate analysis, 81, 84 computerized, 97

N

Naphtha, Paraho shale oil, 7-9, 14-

quantitation, 10-15, 19-25
Naphthalenes, 7-9
National Institute for Occupational
Safety and Health (NIOSH)
permissible exposure limits,
107
Nitrogen-containing compounds
in shale oil acid and base fractions,
35-37
in hydroprocessed shale oil products, 38
NORMA program, 84

0

On-line monitoring (see Gas analysis, on-line)
Oxygen-containing compounds, 34-37, 94, 97

P

Pachysphaera, 94 Paraho direct heat process, 39 Paraho oil shale, 5 Pentacyclic triterpanes, 122 Perhydranthracene/perhydropenanthrene, 59, 63-79 Perhydrofluorene, 56, 58 Petroleum exploration, 121 Phenanthrene, 18, 19 Phenols, 18, 19, 23, 25 in eastern shale oil, 31-32 polynuclear aromatic, 31 Pollutants, atmospheric, 107 Polymerization, 44, 47, 87 oxidative products, 104 Potentiometric titration of hydroprocessed shale oil products, 38 Preasphaltene, 28-29 Pyridines, 23, 25 pyridine 1 (P1), 42, 44-47 pyridine 2 (P2), 39-40, 41-47 Pyrolysis mass spectrometry, 81 integrated mode, 83-84 time-integrated mode, 84, 90-96 Pyrrole (PYR), 39-40, 41-47 Pyrrole/arylamine (PYR/AR), 39-40, 41-47

Q

Quinoline compounds, 42

R

Residuum, 39 Rocky Mountain Overthrust Belt, 127-128 S

Saturates, 49 Shale oil acid and base fractions, 27 California crude, 134 Cambrian, 133 Cretaceous, 122, 127-128 crude, 39 eastern, 27 Fischer assay gas samples, 115-116, 118 Green River, 27, 39, 82-104, 108 hydroprocessed products, 38 immature, 122-124 key world kerogens, 81 Kingak, 135-136 Kuparuk River oil, 135 mass spectrometry of products, 38 Paraho GC/MS analysis, 5 nitrogen- and oxygen-containing species, 25 Phosphoria, 125 Post Neocomian, 135 potentiometric titration of products, 38 processing, 106 problems, 109 Prudhoe Bay Field, 134-135, 136 pyrolysate gases, 112, 118 Sag River, 135 saturates analysis, 49 separation techniques, 28-29 Shublik, 135-136 trace sulfur compounds from processing, 106 western, 27, 115 Statistical Package for the Social Sciences (SPSS), 84 Sterane stereoisomers, 125-129, 130, 133-134, 137 fragmentation, 129 Stereochemical evolution, 125-126

Steric hindrance, 40-41

Styrenes, 19, 21
Sulfur compounds, trace, 106
corrosive effects, 107-108
detection and analysis, 110-119
production and removal, 108-109
Sulfur dioxide, 107
Synfuel analysis, 47

 \mathbf{T}

Tasmanite kerogen, 82-104

Tasmanites punctoides, 94

Terpane, 124-125, 129, 132, 136

Terpene, 19

Tertralins, 19, 21

Thiophenes, 8, 25, 115-116, 118

Titration analysis of fuel products, 42-45
Toluene, 19
Torbanite kerogen, 82-104
degradation, 90
Tricyclo(6.4.0.0¹)dodecane, 71
Triple quadrupole mass spectrometry/mass spectrometry, 106

V

Volatility of oil fractions, 30

X

Xylenes, 9